Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images

被引:236
作者
Zhang, Qijian [1 ]
Cong, Runmin [1 ,2 ,3 ]
Li, Chongyi [4 ]
Cheng, Ming-Ming [5 ]
Fang, Yuming [6 ]
Cao, Xiaochun [7 ,8 ,9 ]
Zhao, Yao [2 ,3 ]
Kwong, Sam [1 ,10 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[3] Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[5] Nankai Univ, Coll Comp Sci, Tianjin 300071, Peoples R China
[6] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China
[7] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[8] Peng Cheng Lab, Cyberspace Secur Res Ctr, Shenzhen 518055, Peoples R China
[9] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[10] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 51800, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Optical imaging; Optical sensors; Feature extraction; Visualization; Remote sensing; Task analysis; Object detection; Salient object detection; dense attention fluid; global context-aware attention; optical remote sensing images;
D O I
10.1109/TIP.2020.3042084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attention module tackles the scale variation issue by building up a cascaded pyramid framework to progressively refine the attention map in a coarse-to-fine manner. In addition, we construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations, which is currently the largest publicly available benchmark. Extensive experiments demonstrate that our proposed DAFNet significantly outperforms the existing state-of-the-art SOD competitors. https://github.com/rmcong/DAFNet_TIP20
引用
收藏
页码:1305 / 1317
页数:13
相关论文
共 63 条
[1]  
Abkenar MR, 2019, IEEE INT SYMP CIRC S
[2]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[3]  
[Anonymous], 2015, ACS SYM SER
[4]  
[Anonymous], 2018, REMOTE SENS, DOI DOI 10.1163/18765149-12341339
[5]   Salient object detection: A survey [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Hou, Qibin ;
Jiang, Huaizu ;
Li, Jia .
COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) :117-150
[6]   State-of-the-Art in Visual Attention Modeling [J].
Borji, Ali ;
Itti, Laurent .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :185-207
[7]  
Chen ZY, 2020, AAAI CONF ARTIF INTE, V34, P10599
[8]   Global Contrast Based Salient Region Detection [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Torr, Philip H. S. ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :569-582
[9]   Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion [J].
Cong, Runmin ;
Lei, Jianjun ;
Zhang, Changqing ;
Huang, Qingming ;
Cao, Xiaochun ;
Hou, Chunping .
IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (06) :819-823
[10]   Going From RGB to RGBD Saliency: A Depth-Guided Transformation Model [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Hou, Junhui ;
Huang, Qingming ;
Kwong, Sam .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3627-3639