Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials

被引:154
作者
Huang, Zhenjun [1 ]
Wang, Zhixing [1 ]
Zheng, Xiaobo [1 ]
Guo, Huajun [1 ]
Li, Xinhai [1 ]
Jing, Qun [2 ,3 ]
Yang, Zhihua [2 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Chinese Acad Sci, Key Lab Funct Mat & Devices Special Environm, Xinjiang Key Lab Elect Informat Mat & Devices, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Lithium ion batteries; Cathode material; Mg doping; Crystal structure; First-principles calculation; POSITIVE ELECTRODE MATERIALS; LITHIUM ION BATTERIES; THERMAL-PROPERTIES; HIGH-CAPACITY; BEHAVIOR; LICOO2; ENERGY; OXIDE;
D O I
10.1016/j.electacta.2015.09.151
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiNi0.6Co0.2Mn0.2O2 and Mg-substituted LiNi0.6Co0.2Mn0.2O2 cathode materials have been prepared by co-precipitation and high-temperature solid state method. The effects of partial substitution of Ni with Mg in LiNi0.6Co0.2Mn0.2O2 material on its chemical component, crystal structure, surface valence states, electrochemical properties, and Li+ diffusion barrier have been extensively studied. The Rietveld refinement results reveal that cation mixing has been suppressed effectively, and the lattice parameters a and c decrease while the c/a ratio increases induced by Mg doping. The X-ray photoelectron spectroscopy (XPS) indicates that Mg substitution reduces the relative ratio of Ni2+/Ni3+ ions on surface. Electrochemical studies indicate that the Mg-substituted material exhibits better cycling performance. First-principles calculations indicate that Mg doping increase the activation barriers of Li+ migration, thus excesses of Mg substitution lead to rate performance degradation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:795 / 802
页数:8
相关论文
共 35 条
[1]   Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M = Ni0.75Co0.25):: viable cathode materials for rechargeable lithium-ion batteries [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF POWER SOURCES, 2000, 89 (01) :56-63
[2]   Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1722-1729
[3]   Staging phase transitions in LixCoO2 [J].
Chen, ZH ;
Lu, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :A1604-A1609
[4]  
Cho J., 2000, CHEM MATER, V12, P3089
[5]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[6]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590
[7]  
Dean J., 1990, LANGES HDB CHEM MAT, V5
[8]   Nickel-Rich Layered Microspheres Cathodes: Lithium/Nickel Disordering and Electrochemical Performance [J].
Fu, Chaochao ;
Li, Guangshe ;
Luo, Dong ;
Li, Qi ;
Fan, Jianming ;
Li, Liping .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15822-15831
[9]   Cathode materials: A personal perspective [J].
Goodenough, John B. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :996-1000
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603