Multi-task reinforcement learning in humans

被引:35
|
作者
Tomov, Momchil S. [1 ,2 ]
Schulz, Eric [3 ,4 ]
Gershman, Samuel J. [2 ,4 ,5 ]
机构
[1] Harvard Med Sch, Program Neurosci, Boston, MA 02115 USA
[2] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
[3] Max Planck Inst Biol Cybernet, Tubingen, Germany
[4] Harvard Univ, Dept Psychol, 33 Kirkland St, Cambridge, MA 02138 USA
[5] Ctr Brains Minds & Machines, Cambridge, MA USA
关键词
ORBITOFRONTAL CORTEX; COGNITIVE MAP; ATTENTION;
D O I
10.1038/s41562-020-01035-y
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The ability to transfer knowledge across tasks and generalize to novel ones is an important hallmark of human intelligence. Yet not much is known about human multitask reinforcement learning. We study participants' behaviour in a two-step decision-making task with multiple features and changing reward functions. We compare their behaviour with two algorithms for multitask reinforcement learning, one that maps previous policies and encountered features to new reward functions and one that approximates value functions across tasks, as well as to standard model-based and model-free algorithms. Across three exploratory experiments and a large preregistered confirmatory experiment, our results provide evidence that participants who are able to learn the task use a strategy that maps previously learned policies to novel scenarios. These results enrich our understanding of human reinforcement learning in complex environments with changing task demands. Studying behaviour in a decision-making task with multiple features and changing reward functions, Tomov et al. find that a strategy that combines successor features with generalized policy iteration predicts behaviour best.
引用
收藏
页码:764 / +
页数:12
相关论文
共 50 条
  • [1] Multi-task reinforcement learning in humans
    Momchil S. Tomov
    Eric Schulz
    Samuel J. Gershman
    Nature Human Behaviour, 2021, 5 : 764 - 773
  • [2] Sparse Multi-Task Reinforcement Learning
    Calandriello, Daniele
    Lazaric, Alessandro
    Restelli, Marcello
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] Multi-Task Reinforcement Learning for Quadrotors
    Xing, Jiaxu
    Geles, Ismail
    Song, Yunlong
    Aljalbout, Elie
    Scaramuzza, Davide
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2112 - 2119
  • [4] Sparse multi-task reinforcement learning
    Calandriello, Daniele
    Lazaric, Alessandro
    Restelli, Marcello
    INTELLIGENZA ARTIFICIALE, 2015, 9 (01) : 5 - 20
  • [5] Multi-task Learning with Modular Reinforcement Learning
    Xue, Jianyong
    Alexandre, Frederic
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 127 - 138
  • [6] Unsupervised Task Clustering for Multi-task Reinforcement Learning
    Ackermann, Johannes
    Richter, Oliver
    Wattenhofer, Roger
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 222 - 237
  • [7] Multi-task Batch Reinforcement Learning with Metric Learning
    Li, Jiachen
    Quan Vuong
    Liu, Shuang
    Liu, Minghua
    Ciosek, Kamil
    Christensen, Henrik
    Su, Hao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] A Survey of Multi-Task Deep Reinforcement Learning
    Vithayathil Varghese, Nelson
    Mahmoud, Qusay H.
    ELECTRONICS, 2020, 9 (09) : 1 - 21
  • [9] Multi-Task Deep Reinforcement Learning with PopArt
    Hessel, Matteo
    Soyer, Hubert
    Espeholt, Lasse
    Czarnecki, Wojciech
    Schmitt, Simon
    van Hasselt, Hado
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3796 - 3803
  • [10] Attentive Multi-task Deep Reinforcement Learning
    Bram, Timo
    Brunner, Gino
    Richter, Oliver
    Wattenhofer, Roger
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 134 - 149