The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values

被引:136
作者
Harjulehto, Petteri [1 ]
Hasto, Peter
Koskenoja, Mika
Varonen, Susanna
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
[2] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
variable exponent Sobolev space; zero boundary values; Sobolev capacity; Poincare inequality; Dirichlet energy integral;
D O I
10.1007/s11118-006-9023-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study variable exponent Sobolev spaces with zero boundary values. This allows us to prove that the Dirichlet energy integral has a minimizer in the variable exponent case. Our results are based on a Poincare-type inequality, which we prove under a certain local jump condition for the variable exponent.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 42 条
[21]  
Harjulehto P., 2003, J. Funct. Spaces Appl, V1, P17
[22]  
Hästö PA, 2005, CONTEMP MATH, V370, P133
[23]  
Hästö PA, 2007, REV MAT IBEROAM, V23, P213
[24]  
Heinonen J., 1993, Nonlinear Potential Theory of Degenerate Elliptic Equations
[25]  
Hudzik H., 1979, COMMENT MATH PRACE M, V21, P315
[26]  
Kilpelainen T, 1998, ANN ACAD SCI FENN-M, V23, P261
[27]   Sobolev spaces with zero boundary values on metric spaces [J].
Kilpeläinen, T ;
Kinnunen, J ;
Martio, O .
POTENTIAL ANALYSIS, 2000, 12 (03) :233-247
[28]  
Kinderlehrer D., 1980, An Introduction to Variational Inequalities and Their Applications
[29]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[30]  
Maly J., 1997, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, DOI [DOI 10.1090/SURV/051, 10.1090/surv/051]