The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values

被引:134
作者
Harjulehto, Petteri [1 ]
Hasto, Peter
Koskenoja, Mika
Varonen, Susanna
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
[2] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
variable exponent Sobolev space; zero boundary values; Sobolev capacity; Poincare inequality; Dirichlet energy integral;
D O I
10.1007/s11118-006-9023-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study variable exponent Sobolev spaces with zero boundary values. This allows us to prove that the Dirichlet energy integral has a minimizer in the variable exponent case. Our results are based on a Poincare-type inequality, which we prove under a certain local jump condition for the variable exponent.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 42 条
[1]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[2]  
Adams D. R., 1996, Function Spaces and Potential Theory
[3]   Holder continuity of p(x)-harmonic functions [J].
Alkhutov, YA .
SBORNIK MATHEMATICS, 2005, 196 (1-2) :147-171
[4]  
Alkhutov YA, 1997, DIFF EQUAT+, V33, P1653
[5]  
[Anonymous], 1995, RUSSIAN J MATH PHYS
[6]   Holder continuity of the gradient of p(x)-harmonic mappings [J].
Coscia, A ;
Mingione, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04) :363-368
[7]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[8]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197
[9]  
Dunford N., 1958, Linear Operators Part I
[10]   DENSITY OF SMOOTH FUNCTIONS IN W(K,P(X))(OMEGA) [J].
EDMUNDS, DE ;
RAKOSNIK, J .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 437 (1899) :229-236