Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres

被引:17
作者
Hu, Ran [1 ]
Zhang, Min [1 ]
Adhikari, Benu [2 ]
Liu, Yaping [3 ]
机构
[1] Jiangnan Univ, Sch Food Sci & Technol, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] RMIT Univ, Sch Appl Sci, Melbourne, Vic 3001, Australia
[3] Guangdong Galore Food Co Ltd, Zhongshan 528447, Peoples R China
关键词
homogenization; ultrasonication; wheat bran; insoluble dietary fibre; physical properties; PHYSICOCHEMICAL PROPERTIES; DIETARY FIBER; FUNCTIONAL-PROPERTIES; MICROFLUIDIZATION PROCESS; ANTIOXIDANT CAPACITY; CELLULOSE; MICRONIZATION; NANOFIBERS; MICROSTRUCTURE; DISRUPTION;
D O I
10.1515/intag-2015-0048
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Wheat bran is rich in dietary fibre and its annual output is abundant, but underutilized. Insoluble dietary fibre often influences food quality negatively; therefore, how to improve the physical and chemical properties of insoluble dietary fibre of wheat bran for post processing is a challenge. Insoluble dietary fibre was obtained from wheat bran and micronized using high-pressure homogenization, high-intensity sonication, and a combination of these two methods. The high-pressure homogenization and high-pressure homogenization+high-intensity sonication treatments significantly (p<0.05) improved the solubility, swelling, water-holding, oil-holding, and cation exchange capacities. The improvement of the above properties by high-intensity sonication alone was marginal. In most cases, the high-pressure homogenization process was as good as the high-pressure homogenization+high-intensity sonication process in improving the above-mentioned properties; hence, the contribution of high-intensity sonication in the high-pressure homogenization+high-intensity sonication process was minimal. The best results show that the minimum particle size of wheat bran can reach 9 mu m, and the solubility, swelling, water-holding, oil-holding, cation exchange capacities change significantly.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 46 条
[1]   Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls [J].
Alemdar, Ayse ;
Sain, Mohini .
BIORESOURCE TECHNOLOGY, 2008, 99 (06) :1664-1671
[2]  
[Anonymous], FOOD NUTR RES
[3]   Dispersibility in Water of Dried Nanocrystalline Cellulose [J].
Beck, Stephanie ;
Bouchard, Jean ;
Berry, Richard .
BIOMACROMOLECULES, 2012, 13 (05) :1486-1494
[4]   Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time [J].
Benhamou, Karima ;
Dufresne, Alain ;
Magnin, Albert ;
Mortha, Gerard ;
Kaddami, Hamid .
CARBOHYDRATE POLYMERS, 2014, 99 :74-83
[5]   Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. cv. Liucheng [J].
Chau, CF ;
Huang, YL .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (09) :2615-2618
[6]   Different micronization methods significantly improve the functionality of carrot insoluble fibre [J].
Chau, Chi-Fai ;
Wang, Yi-Ting ;
Wen, Yu-Ling .
FOOD CHEMISTRY, 2007, 100 (04) :1402-1408
[7]   Effect of microfluidization process on the functional properties of insoluble dietary fiber [J].
Chen, Jialun ;
Gao, Dongxiao ;
Yang, Letian ;
Gao, Yanxiang .
FOOD RESEARCH INTERNATIONAL, 2013, 54 (02) :1821-1827
[8]   Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing [J].
Chen, Peng ;
Yu, Haipeng ;
Liu, Yixing ;
Chen, Wenshuai ;
Wang, Xiaoqing ;
Ouyang, Mi .
CELLULOSE, 2013, 20 (01) :149-157
[9]   Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers [J].
Chen, Wenshuai ;
Li, Qing ;
Wang, Youcheng ;
Yi, Xin ;
Zeng, Jie ;
Yu, Haipeng ;
Liu, Yixing ;
Li, Jian .
CHEMSUSCHEM, 2014, 7 (01) :154-161
[10]   Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80 nm from bamboo fibers [J].
Chen, Wenshuai ;
Yu, Haipeng ;
Liu, Yixing .
CARBOHYDRATE POLYMERS, 2011, 86 (02) :453-461