Intrinsic magnetization of antiferromagnetic textures

被引:90
作者
Tveten, Erlend G. [1 ]
Mueller, Tristan [2 ]
Linder, Jacob [1 ]
Brataas, Arne [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
[2] Rhein Westfal TH Aachen, JARA Inst Quantum Informat, D-52074 Aachen, Germany
关键词
QUANTUM SPIN CHAINS; DOMAIN-WALLS; HEISENBERG ANTIFERROMAGNETS; ANTI-FERROMAGNETS; SOLITONS; FIELD; SPINTRONICS; DYNAMICS; STATES; PHASE;
D O I
10.1103/PhysRevB.93.104408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.
引用
收藏
页数:13
相关论文
共 59 条
[1]   QUANTUM SPIN CHAINS AND THE HALDANE GAP [J].
AFFLECK, I .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (19) :3047-3072
[2]   THE QUANTUM HALL-EFFECTS, ORTHO-MODELS AT THETA=PI AND QUANTUM SPIN CHAINS [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1985, 257 (03) :397-406
[3]   AN APPROXIMATE QUANTUM THEORY OF THE ANTIFERROMAGNETIC GROUND STATE [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1952, 86 (05) :694-701
[4]  
Andreev A. F., 1980, Soviet Physics - Uspekhi, V23, P21, DOI 10.1070/PU1980v023n01ABEH004859
[5]  
Auerbach A., 2012, INTERACTING ELECT QU
[6]  
Bar'yakhatar I. V., 1979, LOW TEMP PHYS, V5, p[759, 361]
[7]   NON-LINEAR WAVES IN ANTI-FERROMAGNETS [J].
BARYAKHTAR, IV ;
IVANOV, BA .
SOLID STATE COMMUNICATIONS, 1980, 34 (07) :545-547
[8]   DYNAMICS OF DOMAIN BOUNDARIES IN WEAK FERROMAGNETS [J].
BARYAKHTAR, VG ;
IVANOV, BA ;
CHETKIN, MV .
USPEKHI FIZICHESKIKH NAUK, 1985, 146 (03) :417-458
[9]   Origin and Tailoring of the Antiferromagnetic Domain Structure in α-Fe2O3 Thin Films Unraveled by Statistical Analysis of Dichroic Spectromicroscopy (X-Ray Photoemission Electron Microscopy) Images [J].
Bezencenet, Odile ;
Bonamy, Daniel ;
Belkhou, Rachid ;
Ohresser, Philippe ;
Barbier, Antoine .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[10]   Atomic spin structure of antiferromagnetic domain walls [J].
Bode, M. ;
Vedmedenko, E. Y. ;
Von Bergmann, K. ;
Kubetzka, A. ;
Ferriani, P. ;
Heinze, S. ;
Wiesendanger, R. .
NATURE MATERIALS, 2006, 5 (06) :477-481