Knowledge Base Completion by Learning to Rank Model

被引:1
作者
Huang, Yong [1 ,2 ]
Wang, Zhichun [1 ,2 ]
机构
[1] Beijing Normal Univ, Beijing Adv Innovat Ctr Future Educ, XinJieKouWai St 19, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Coll Informat Sci & Technol, XinJieKouWai St 19, Beijing 100875, Peoples R China
来源
KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: LANGUAGE, KNOWLEDGE, AND INTELLIGENCE, CCKS 2017 | 2017年 / 784卷
关键词
Knowledge base completion; Path ranking; Learning to rank;
D O I
10.1007/978-981-10-7359-5_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge base (KB) completion aims to predict new facts from the existing ones in KBs. There are many KB completion approaches, one of the state-of-art approaches is Path Ranking Algorithm (PRA), which predicts new facts based on path types connecting entities. PRA treats the relation prediction as a classification problem, and logistic regression is used as the classification model. In this work, we consider the relation prediction as a ranking problem; learning to rank model is trained on path types to predict new facts. Experiments on YAGO show that our proposed approach outperforms approaches using classification models.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 16 条
  • [1] DBpedia - A crystallization point for the Web of Data
    Bizer, Christian
    Lehmann, Jens
    Kobilarov, Georgi
    Auer, Soeren
    Becker, Christian
    Cyganiak, Richard
    Hellmann, Sebastian
    [J]. JOURNAL OF WEB SEMANTICS, 2009, 7 (03): : 154 - 165
  • [2] Bordes A, 2013, P 26 INT C NEURAL IN, P2787
  • [3] Cao Z., 2007, P 24 INT C MACH LEAR, P129, DOI [DOI 10.1145/1273496.1273513, 10.1145/1273496.1273513]
  • [4] Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion
    Dong, Xin Luna
    Gabrilovich, Evgeniy
    Heitz, Geremy
    Horn, Wilko
    Lao, Ni
    Murphy, Kevin
    Strohmann, Thomas
    Sun, Shaohua
    Zhang, Wei
    [J]. PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 601 - 610
  • [5] Gardner M., 2015, P 2015 C EMP METH NA, P1488
  • [6] Gardner Matt, 2014, P 2014 C EMP METH NA
  • [7] Lao N, 2011, C EMP METH NAT LANG
  • [8] Relational retrieval using a combination of path-constrained random walks
    Lao, Ni
    Cohen, William W.
    [J]. MACHINE LEARNING, 2010, 81 (01) : 53 - 67
  • [9] Lin Y., 2015, P 2015 C EMPIRICAL M
  • [10] MUGGLETON S, 1990, NEW GENERAT COMPUT, V8, P295