Shintani-Barnes zeta and gamma functions

被引:48
作者
Friedman, E
Ruijsenaars, S
机构
[1] Univ Chile, Fac Ciencias, Santiago, Chile
[2] Ctr Math & Comp Sci, NL-1090 GB Amsterdam, Netherlands
关键词
multiple gamma function; Shintani zeta function; elliptic gamma function; Raabe's formula;
D O I
10.1016/j.aim.2003.07.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Shintani's work on multiple zeta and gamma functions can be simplified and extended by exploiting difference equations. We re-prove many of Shintani's formulas and prove several new ones. Among the latter is a generalization to the Shintani-Barnes gamma functions of Raabe's 1843 formula integral(0)(1) log Gamma(x) dx = log root2pi, and a further generalization to the Shintani zeta functions. These explicit formulas can be interpreted as "vanishing period integral" side conditions for the ladder of difference equations obeyed by the multiple gamma and zeta functions. We also relate Barnes' triple gamma function to the elliptic gamma function appearing in connection with certain integrable systems. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:362 / 395
页数:34
相关论文
共 18 条
[1]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[2]  
Barnes E., 1899, P LOND MATH SOC, V31, P358, DOI 10.1112/plms/s1-31.1.358
[3]  
Barnes E., 1904, T CAMBRIDGE PHILOS S, V19, P374
[4]   Vanishing of the integral of the Hurwitz zeta function [J].
Broughan, KA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (01) :121-127
[5]   NEGATIVE INTEGRAL VALUES OF ZETA-FUNCTIONS AND P-ADIC ZETA-FUNCTIONS [J].
CASSOUNOGUES, P .
INVENTIONES MATHEMATICAE, 1979, 51 (01) :29-59
[6]   A theorem on zeta functions associated with polynomials [J].
Eie, MK ;
Chen, KW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) :3217-3228
[7]   On some integrals involving the Hurwitz zeta function: Part 1 [J].
Espinosa, O ;
Moll, VH .
RAMANUJAN JOURNAL, 2002, 6 (02) :159-188
[8]   Mellin's theorem [J].
Mahler, K .
MATHEMATISCHE ANNALEN, 1928, 100 :384-398
[9]  
Nielsen N., 1965, HDB THEORIE GAMMAFUN
[10]  
Ruijsenaars SNM, 2001, NATO SCI SER II-MATH, V30, P281