The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms

被引:123
作者
Adams, Luise [1 ]
Bogner, Christian [2 ]
Weinzierl, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[2] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany
关键词
DIFFERENTIAL-EQUATIONS; MASTER INTEGRALS; NUMERICAL EVALUATION; SELF-ENERGIES; DIAGRAMS; AMPLITUDES;
D O I
10.1063/1.4896563
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the two-loop sunrise integral with arbitrary non-zero masses in two space-time dimensions in terms of elliptic dilogarithms. We find that the structure of the result is as simple and elegant as in the equal mass case, only the arguments of the elliptic dilogarithms are modified. These arguments have a nice geometric interpretation. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:17
相关论文
共 27 条
  • [1] The two-loop sunrise graph with arbitrary masses
    Adams, Luise
    Bogner, Christian
    Weinzierl, Stefan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
  • [2] Elliptic integral evaluations of Bessel moments and applications
    Bailey, David H.
    Borwein, Jonathan M.
    Broadhurst, David
    Glasser, M. L.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (20)
  • [3] SIMPLE ONE-DIMENSIONAL INTEGRAL-REPRESENTATIONS FOR 2-LOOP SELF-ENERGIES - THE MASTER DIAGRAM
    BAUBERGER, S
    BOHM, M
    [J]. NUCLEAR PHYSICS B, 1995, 445 (01) : 25 - 46
  • [4] ANALYTICAL AND NUMERICAL-METHODS FOR MASSIVE 2-LOOP SELF-ENERGY DIAGRAMS
    BAUBERGER, S
    BERENDS, FA
    BOHM, M
    BUZA, M
    [J]. NUCLEAR PHYSICS B, 1995, 434 (1-2) : 383 - 407
  • [5] BAUBERGER S, 1994, NUCL PHYS B, P95
  • [6] Beilinson A., 1994, P S PURE MATH, V55, P97
  • [7] CLOSED EXPRESSIONS FOR SPECIFIC MASSIVE MULTILOOP SELF-ENERGY INTEGRALS
    BERENDS, FA
    BOHM, M
    BUZA, M
    SCHARF, R
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 63 (02): : 227 - 234
  • [8] One-loop amplitudes for e(+)e(-)->(q)over-bar q(Q)over-bar-Q
    Bern, Z
    Dixon, L
    Kosower, DA
    Weinzierl, S
    [J]. NUCLEAR PHYSICS B, 1997, 489 (1-2) : 3 - 23
  • [9] Bloch S., 2013, ARXIV13085865
  • [10] 2-LOOP 2-POINT FUNCTIONS WITH MASSES - ASYMPTOTIC EXPANSIONS AND TAYLOR-SERIES, IN ANY DIMENSION
    BROADHURST, DJ
    FLEISCHER, J
    TARASOV, OV
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 60 (02): : 287 - 301