Generalized probabilistic metric spaces and fixed point theorems

被引:20
作者
Zhou, Caili [1 ,2 ]
Wang, Shenghua [3 ]
Ciric, Ljubomir [4 ]
Alsulami, Saud M. [5 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Baoding 071003, Peoples R China
[4] Univ Belgrade, Fac Mech Engn, Belgrade 11000, Serbia
[5] King Abdulaziz Univ, Dept Math, Jeddah 21323, Saudi Arabia
来源
FIXED POINT THEORY AND APPLICATIONS | 2014年
基金
中国国家自然科学基金;
关键词
Menger metric space; contraction mapping; G-metric space; fixed point theorem; CONTRACTIONS; DISTANCE; MAPPINGS;
D O I
10.1186/1687-1812-2014-91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new concept of probabilistic metric space, which is a generalization of the Menger probabilistic metric space, and we investigate some topological properties of this space and related examples. Also, we prove some fixed point theorems, which are the probabilistic versions of Banach's contraction principle. Finally, we present an example to illustrate the main theorems.
引用
收藏
页数:15
相关论文
共 33 条
  • [1] Symmetric Spaces and Fixed Points of Generalized Contractions
    Alshehri, Sarah
    Arandelovic, Ivan
    Shahzad, Naseer
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] [Anonymous], 2011, Probabilistic Metric Spaces
  • [3] Chang S. Z., 1983, SCI SINICA A, V26, P1144
  • [4] Chang S-S, 2001, NONLINEAR OPERATOR T
  • [5] Cho Y. J., 2001, Theory of 2-inner product spaces
  • [6] Monotone generalized contractions in partially ordered probabilistic metric spaces
    Ciric, Lj. B.
    Mihet, D.
    Saadati, R.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (17) : 2838 - 2844
  • [7] Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces
    Ciric, Ljubomir
    Agarwal, Ravi P.
    Samet, Bessem
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2011, : 1 - 13
  • [8] Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces
    Ciric, Ljubomir
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 2009 - 2018
  • [9] Dhage B.C., 1992, Bull. Cal. Math. Soc., V84, P329
  • [10] Fang J.-X., 1991, Appl. Math. Mech., V12, P363