MIL-53 frameworks in mixed-matrix membranes

被引:97
|
作者
Hsieh, Josephine O.
Balkus, Kenneth J., Jr.
Ferraris, John P.
Musselman, Inga H. [1 ]
机构
[1] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA
基金
美国国家科学基金会;
关键词
MIL-53; Breathing; Mixed-matrix membrane; Polymer confinement; Gas separation; METAL-ORGANIC-FRAMEWORK; CARBON MOLECULAR-SIEVES; GAS SEPARATION; STRUCTURAL TRANSITION; ADSORPTION; CO2; PERMEABILITY; PERFORMANCE; CO2/CH4; MATRIMID(R);
D O I
10.1016/j.micromeso.2014.05.006
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The MIL-53 metal organic framework (MOF) is known to change reversibly from an open-pore framework (MIL-53-ht) to a closed-pore framework (MIL-53-lt) depending on the temperature, pressure, or guest molecules absorbed. Three frameworks of the additive, MIL-53-as synthesized (MIL-53-as), MIL-53-ht, and MIL-53-lt, were prepared, characterized, and combined with Matrimid (R) to form mixed-matrix membranes (MMMs) for gas separations. The MIL-53-ht/Matrimid (R) MMMs exhibited higher values of permeability compared to Matrimid (R) as well as an increased CO2/CH4 selectivity suggesting that the open-pore MIL-53 framework was maintained in the polymer matrix. In addition to higher permeability values, MIL-53-as/Matrimid (R) MMMs showed higher selectivity for gas pairs with kinetic diameters differing by >= 0.5 angstrom, including H-2/O-2, CO2/CH4, H-2/CH4, and H-2/N-2, suggesting the presence of excess benzene dicarboxylic acid molecules within the pores that reduced its diameter enabling the material to discriminate between smaller and larger gases. MIL-53-lt did not retain its closed-pore form in the MMM. Rather, it irreversibly converted to the open-pore form (MIL-53-ht) due to the exchange of water present in the MIL-53 pores with chloroform solvent molecules during membrane casting and to pore penetration and confinement by Matrimid (R) polymer chains. This finding, that a polymer matrix stabilizes a MOF pore architecture within an MMM, is significant in that the desired selectivity of a MOF-MMM system may be achievable. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条
  • [31] Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification
    Yang, Leixin
    Zhang, Shengbo
    Wu, Hong
    Ye, Chumei
    Liang, Xu
    Wang, Shaofei
    Wu, Xingyu
    Wu, Yingzhen
    Ren, Yanxiong
    Liu, Yutao
    Nasir, Nayab
    Jiang, Zhongyi
    JOURNAL OF MEMBRANE SCIENCE, 2019, 573 : 301 - 308
  • [32] Two-Dimensional Nanomaterials Used as Fillers in Mixed-Matrix Membranes for Effective CO2 Separation
    Akhte, Khirul Md
    Jee, Hobin
    Yang, Euntae
    APPLIED CHEMISTRY FOR ENGINEERING, 2024, 35 (03): : 155 - 181
  • [33] Mixed matrix membranes based on MIL-101 metal-organic frameworks in polymer of intrinsic microporosity PIM-1
    Khdhayyer, Muhanned
    Bushell, Alexandra F.
    Budd, Peter M.
    Attfield, Martin P.
    Jiang, Dongmei
    Burrows, Andrew D.
    Esposito, Elisa
    Bernardo, Paola
    Monteleone, Marcello
    Fuoco, Alessio
    Clarizia, Gabriele
    Bazzarelli, Fabio
    Gordano, Amalia
    Jansen, Johannes C.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 212 : 545 - 554
  • [34] Mixed-matrix gas separation membranes for sustainable future: A mini review
    Chakrabarty, Tina
    Giri, Arnab Kanti
    Sarkar, Supriya
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (06) : 1747 - 1761
  • [35] Activated carbon in mixed-matrix membranes
    Lewis, Jeremy
    Al-sayaghi, Maram A. Q.
    Buelke, Chris
    Alshami, Ali
    SEPARATION AND PURIFICATION REVIEWS, 2021, 50 (01) : 1 - 31
  • [36] Comparison of hollow fiber and flat mixed-matrix membranes: Theory and simulation
    Monsalve-Bravo, Gloria M.
    Bhatia, Suresh K.
    CHEMICAL ENGINEERING SCIENCE, 2018, 187 : 174 - 188
  • [37] Mixed-Matrix Membranes for CO2/N2 Separation Comprising a Poly(vinylamine) Matrix and Metal-Organic Frameworks
    Zhao, Song
    Cao, Xiaochang
    Ma, Zijian
    Wang, Zhi
    Qiao, Zhihua
    Wang, Jixiao
    Wang, Shichang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (18) : 5139 - 5148
  • [38] Advances in mixed-matrix membranes for biorefining of biogas from anaerobic digestion
    Guerrero Pina, Jean Carlo
    Alpizar, Daniel
    Murillo, Paola
    Carpio-Chaves, Monica
    Pereira-Reyes, Reynaldo
    Vega-Baudrit, Jose
    Villarreal, Claudia
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [39] Transport Properties of Mixed-Matrix Membranes: A Kinetic Monte Carlo Study
    Schneider, Daniel
    Kapteijn, Freek
    Valiullin, Rustem
    PHYSICAL REVIEW APPLIED, 2019, 12 (04):
  • [40] Influence of casting solvents on sedimentation and performance in metal-organic framework mixed-matrix membranes
    Chang, Yi-Wei
    Chang, Bor Kae
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 89 : 224 - 233