Continuous Symmetries and Approximate Quantum Error Correction

被引:76
作者
Faist, Philippe [1 ,2 ]
Nezami, Sepehr [3 ]
Albert, Victor V. [1 ,4 ]
Salton, Grant [1 ,3 ]
Pastawski, Fernando [2 ]
Hayden, Patrick [3 ]
Preskill, John [1 ,4 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[3] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[4] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
CODES; ENTANGLEMENT; COMPUTATION; INFORMATION;
D O I
10.1103/PhysRevX.10.041018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here, we study the compatibility of these two important principles. If a logical quantum system is encoded into n physical subsystems, we say that the code is covariant with respect to a symmetry group G if a G transformation on the logical system can be realized by performing transformations on the individual subsystems. For a G-covariant code with G a continuous group, we derive a lower bound on the error-correction infidelity following erasure of a subsystem. This bound approaches zero when the number of subsystems nor the dimension d of each subsystem is large. We exhibit codes achieving approximately the same scaling of infidelity with n or d as the lower bound. Leveraging tools from representation theory, we prove an approximate version of the Eastin-Knill theorem for quantum computation: If a code admits a universal set of transversal gates and corrects erasure with fixed accuracy, then, for each logical qubit, we need a number of physical qubits per subsystem that is inversely proportional to the error parameter. We construct codes covariant with respect to the full logical unitary group, achieving good accuracy for large d (using random codes) or n (using codes based on W states). We systematically construct codes covariant with respect to general groups, obtaining natural generalizations of qubit codes to, for instance, oscillators and rotors. In the context of the AdS/CFT correspondence, our approach provides insight into how time evolution in the bulk corresponds to time evolution on the boundary without violating the Eastin-Knill theorem, and our five-rotor code can be stacked to form a covariant holographic code.
引用
收藏
页数:31
相关论文
共 101 条
[1]  
Aharonov D., 1997, PROC ACM S THEORY CO, P176, DOI DOI 10.1145/258533.258579
[2]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[3]   General phase spaces: from discrete variables to rotor and continuum limits [J].
Albert, Victor V. ;
Pascazio, Saverio ;
Devoret, Michel H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (50)
[4]   Bulk locality and quantum error correction in AdS/CFT [J].
Almheiri, Ahmed ;
Dong, Xi ;
Harlow, Daniel .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04)
[5]  
Anderson JT, 2016, QUANTUM INF COMPUT, V16, P771
[6]  
[Anonymous], ARXIV181005338
[7]  
Arovas D. P., 2016, LECT NOTES GROUP THE, V220
[8]   Increasing Sensing Resolution with Error Correction [J].
Arrad, G. ;
Vinkler, Y. ;
Aharonov, D. ;
Retzker, A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (15)
[9]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[10]  
Barnes R. L., ARXIVQUANTPH0405064