Adelic models of tensor-triangulated categories

被引:7
|
作者
Balchin, Scott [1 ]
Greenlees, J. P. C. [1 ]
机构
[1] Warwick Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Adelic approximation; Algebraic model; Tensor triangulated category; Balmer spectrum; Localization; Completion; ALGEBRAIC-GEOMETRY; BALMER SPECTRUM; HOMOTOPY-THEORY; MODULES; PRINCIPLE;
D O I
10.1016/j.aim.2020.107339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category has a model built from categories of modules over completed rings in an adelic fashion. Special cases include abelian groups (the Hasse square), chromatic homotopy theory (a module theoretic chromatic fracture square), and rational torus-equivariant homotopy theory (first step to the model of [30]). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 50 条
  • [21] Tilting objects in triangulated categories
    Hu, Yonggang
    Yao, Hailou
    Fu, Xuerong
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 410 - 429
  • [22] DEGENERATING 0 IN TRIANGULATED CATEGORIES
    Saorin, Manuel
    Zimmermann, Alexander
    NAGOYA MATHEMATICAL JOURNAL, 2021, 244 : 158 - 167
  • [23] Rank functions on triangulated categories
    Chuang, Joseph
    Lazarev, Andrey
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 781 : 127 - 164
  • [24] ENRICHMENT AND REPRESENTABILITY FOR TRIANGULATED CATEGORIES
    Steen, Johan
    Stevenson, Greg
    DOCUMENTA MATHEMATICA, 2017, 22 : 1031 - 1062
  • [25] SPECTRUM OF SOME TRIANGULATED CATEGORIES
    Dubey, Umesh V.
    Mallick, Vivek M.
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2011, 18 : 50 - 53
  • [26] Parametrizing recollement data for triangulated categories
    Nicolas, Pedro
    Saorin, Manuel
    JOURNAL OF ALGEBRA, 2009, 322 (04) : 1220 - 1250
  • [27] PROPER RESOLUTIONS AND GORENSTEINNESS IN TRIANGULATED CATEGORIES
    Yang, Xiaoyan
    Wang, Zhicheng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (03) : 1013 - 1053
  • [28] Applications of Cotorsion Pairs on Triangulated Categories
    Cheng, Haixia
    Zhu, Xiaosheng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (05) : 1353 - 1366
  • [29] Thom isomorphisms in triangulated motivic categories
    Ananyevskiy, Alexey
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (04): : 2085 - 2106
  • [30] COSUPPORT FOR COMPACTLY GENERATED TRIANGULATED CATEGORIES
    Yang, Xiaoyan
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 116 (01) : 128 - 144