Adelic models of tensor-triangulated categories

被引:8
作者
Balchin, Scott [1 ]
Greenlees, J. P. C. [1 ]
机构
[1] Warwick Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Adelic approximation; Algebraic model; Tensor triangulated category; Balmer spectrum; Localization; Completion; ALGEBRAIC-GEOMETRY; BALMER SPECTRUM; HOMOTOPY-THEORY; MODULES; PRINCIPLE;
D O I
10.1016/j.aim.2020.107339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category has a model built from categories of modules over completed rings in an adelic fashion. Special cases include abelian groups (the Hasse square), chromatic homotopy theory (a module theoretic chromatic fracture square), and rational torus-equivariant homotopy theory (first step to the model of [30]). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 48 条
[41]  
Morrow M., 2012, ARXIV12040586
[42]   Algebras and modules in monoidal model categories [J].
Schwede, S ;
Shipley, BE .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 :491-511
[43]   Stable model categories are categories of modules [J].
Schwede, S ;
Shipley, B .
TOPOLOGY, 2003, 42 (01) :103-153
[44]   The local-to-global principle for triangulated categories via dimension functions [J].
Stevenson, Greg .
JOURNAL OF ALGEBRA, 2017, 473 :406-429
[45]   Support theory via actions of tensor triangulated categories [J].
Stevenson, Greg .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 681 :219-254
[46]  
Stevenson RL, 2018, DU-Z KULTUR, P63
[47]  
Toën B, 2008, MEM AM MATH SOC, V193, P1
[48]   Derived Hall algebras [J].
Toen, Bertrand .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :587-615