Adelic models of tensor-triangulated categories

被引:8
作者
Balchin, Scott [1 ]
Greenlees, J. P. C. [1 ]
机构
[1] Warwick Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Adelic approximation; Algebraic model; Tensor triangulated category; Balmer spectrum; Localization; Completion; ALGEBRAIC-GEOMETRY; BALMER SPECTRUM; HOMOTOPY-THEORY; MODULES; PRINCIPLE;
D O I
10.1016/j.aim.2020.107339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category has a model built from categories of modules over completed rings in an adelic fashion. Special cases include abelian groups (the Hasse square), chromatic homotopy theory (a module theoretic chromatic fracture square), and rational torus-equivariant homotopy theory (first step to the model of [30]). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 48 条
[1]  
Ayala D., 2019, ARXIV191014602
[2]  
Balchin S., 2020, SEPARATED ADEL UNPUB
[3]  
Balmer P, 2005, J REINE ANGEW MATH, V588, P149
[4]   Supports and filtrations in algebraic geometry and modular representation theory [J].
Balmer, Paul .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (05) :1227-1250
[5]   Generalized tensor idempotents and the telescope conjecture [J].
Balmer, Paul ;
Favi, Giordano .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 :1161-1185
[6]   Splitting monoidal stable model categories [J].
Barnes, D. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) :846-856
[7]   RATIONAL O(2)-EQUIVARIANT SPECTRA [J].
Barnes, David .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2017, 19 (01) :225-252
[8]   Rational SO(2)- equivariant spectra [J].
Barnes, David ;
Greenlees, J. P. C. ;
Kedziorek, Magdalena ;
Shipley, Brooke .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02) :983-1020
[9]   Homological Localisation of Model Categories [J].
Barnes, David ;
Roitzheim, Constanze .
APPLIED CATEGORICAL STRUCTURES, 2015, 23 (03) :487-505
[10]  
Barthel T., 2014, ARXIV14107271