A proof for non existence of periodic solutions in time invariant fractional order systems

被引:160
作者
Tavazoei, Mohammad Saleh [1 ]
Haeri, Mohammad [1 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Adv Control Syst Lab, Tehran 14584, Iran
关键词
Fractional order system; Periodic solution; Fractional calculus; LIMIT-CYCLE; CHAOS; CONTROLLERS; DERIVATIVES;
D O I
10.1016/j.automatica.2009.04.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this note is to highlight one of the basic differences between fractional order and integer order systems. It is analytically shown that a time invariant fractional order system contrary to its integer order counterpart cannot generate exactly periodic signals. As a result, a limit cycle cannot be expected in the solution of these systems. Our investigation is based on Caputo's definition of the fractional order derivative and includes both the commensurate or incommensurate fractional order systems. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1886 / 1890
页数:5
相关论文
共 31 条
  • [1] Fractional-order Wien-bridge oscillator
    Ahmad, W
    El-khazali, R
    Elwakil, AS
    [J]. ELECTRONICS LETTERS, 2001, 37 (18) : 1110 - 1112
  • [2] Control of chaos: Methods and applications. I. Methods
    Andrievskii, BR
    Fradkov, AL
    [J]. AUTOMATION AND REMOTE CONTROL, 2003, 64 (05) : 673 - 713
  • [3] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [4] Synthesis of fractional Laguerre basis for system approximation
    Aoun, M.
    Malti, R.
    Levron, F.
    Oustaloup, A.
    [J]. AUTOMATICA, 2007, 43 (09) : 1640 - 1648
  • [5] Numerical simulations of fractional systems: An overview of existing methods and improvements
    Aoun, M
    Malti, R
    Levron, F
    Oustaloup, A
    [J]. NONLINEAR DYNAMICS, 2004, 38 (1-4) : 117 - 131
  • [6] Analysis of the van der pol oscillator containing derivatives of fractional order
    Barbosa, Ramiro S.
    Machado, J. A. Tenreiro
    Vinagre, B. M.
    Calderon, A. J.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1291 - 1301
  • [7] Prediction error methods for limit cycle data
    Casas, RA
    Bitmead, RR
    Jacobson, CA
    Johnson, CR
    [J]. AUTOMATICA, 2002, 38 (10) : 1753 - 1760
  • [8] An RLC interconnect model based on Fourier analysis
    Chen, GQ
    Friedman, EG
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2005, 24 (02) : 170 - 183
  • [9] Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives
    Daftardar-Gejji, Varsha
    Jafari, Hossein
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) : 1026 - 1033
  • [10] Analysis of fractional differential equations
    Diethelm, K
    Ford, NJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 229 - 248