A boundary estimate for singular parabolic diffusion equations

被引:12
作者
Gianazza, Ugo [1 ]
Liao, Naian [2 ]
Lukkari, Teemu [3 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[3] Aalto Univ, Dept Math, POB 11100, Espoo 00076, Finland
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2018年 / 25卷 / 04期
关键词
Parabolic p-Laplacian; Boundary estimates; Continuity; Elliptic p-capacity; Wiener-type integral; WEAK SUPERSOLUTIONS; DEGENERATE; REGULARITY;
D O I
10.1007/s00030-018-0523-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an estimate on the modulus of continuity at a boundary point of a cylindrical domain for local weak solutions to singular parabolic equations of p-Laplacian type. The estimate is given in terms of a Wiener-type integral, defined by a proper elliptic p-capacity.
引用
收藏
页数:24
相关论文
共 25 条
[1]  
[Anonymous], JAHRESBERICHT DTSCH
[2]  
[Anonymous], 1976, Vestnik Leningrad Univ. Math.
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]   VARIATIONAL PARABOLIC CAPACITY [J].
Avelin, Benny ;
Kuusi, Tuomo ;
Parviainen, Mikko .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) :5665-5688
[5]   WIENER ESTIMATES FOR PARABOLIC OBSTACLE PROBLEMS [J].
BIROLI, M ;
MOSCO, U .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (09) :1005-1027
[6]  
BIROLI M, 1985, ANN MAT PUR APPL, V141, P353, DOI 10.1007/BF01763181
[7]   Boundary regularity for degenerate and singular parabolic equations [J].
Bjorn, Anders ;
Bjorn, Jana ;
Gianazza, Ugo ;
Parviainen, Mikko .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) :797-827
[8]   Local smoothing effects, positivity, and Harnack inequalities for the fast p-Laplacian equation [J].
Bonforte, Matteo ;
Gabriel Iagar, Razvan ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2151-2215
[9]  
Chen Y.Z., 1990, P NONL DIFF HON J SE
[10]  
DiBenedetto E, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4614-1584-8