Progress on CFETR physics and engineering

被引:21
作者
Gao Xiang [1 ]
Wan BaoNian [1 ]
Song YunTao [1 ]
Li JianGang [1 ]
Wan YuanXi [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
关键词
CFETR; steady-state operation; tritium self-sufficiency; magnetic confinement fusion; Tokamak; CONCEPTUAL DESIGN; BREEDER BLANKET;
D O I
10.1360/SSPMA2018-00235
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Magnetic confinement fusion is an approach to generating thermonuclear fusion power that uses magnetic fields to confine the deuterium and tritium fuel in the form of a plasma. It is considered promising to completely solve the energy problems. China Fusion Engineering Test Reactor (CFETR) is the next Tokamak device in the roadmap to develop fusion energy in China. Two phases of CFETR have been proposed: Phase I focus on a fusion power of 200 MW and steady-state operation with tritium self-sufficiency. Phase II emphasizes a fusion power of 1000 MW and DEMO validation. CFETR will address the physical and engineering challenge that exist between ITER and DEMO, such as D-T steady-state operation, tritium breeding and self-sufficiency, and material that could withstand high heat load and neutron irradiation. This will lay a solid foundation for the independent construction of fusion power stations around 2050 in China.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes [J].
Chan, V. S. ;
Costley, A. E. ;
Wan, B. N. ;
Garofalo, A. M. ;
Leuer, J. A. .
NUCLEAR FUSION, 2015, 55 (02)
[2]   PHYSICS BASIS OF A FUSION DEVELOPMENT FACILITY UTILIZING THE TOKAMAK APPROACH [J].
Chan, V. S. ;
Stambaugh, R. D. ;
Garofalo, A. M. ;
Chu, M. S. ;
Fisher, R. K. ;
Greenfield, C. M. ;
Humphreys, D. A. ;
Lao, L. L. ;
Leuer, J. A. ;
Petrie, T. W. ;
Prater, R. ;
Staebler, G. M. ;
Snyder, P. B. ;
St John, H. E. ;
Turnbull, A. D. ;
Wong, C. P. C. ;
Van Zeeland, M. A. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (01) :66-93
[3]   Preliminary consideration of CFETR ITER-like case diagnostic system [J].
Li, G. S. ;
Yang, Y. ;
Wang, Y. M. ;
Ming, T. F. ;
Han, X. ;
Liu, S. C. ;
Wang, E. H. ;
Liu, Y. K. ;
Yang, W. J. ;
Li, G. Q. ;
Hu, Q. S. ;
Gao, X. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[4]   Study on the temperature control mechanism of the tritium breeding blanket for CFETR [J].
Liu, Changle ;
Qiu, Yang ;
Zhang, Jie ;
Zhang, Jianzhong ;
Li, Lei ;
Yao, Damao ;
Li, Guoqiang ;
Gao, Xiang ;
Wu, Songtao ;
Wan, Yuanxi .
NUCLEAR FUSION, 2017, 57 (12)
[5]   Investigation on the Possibility of Tritium Self-Sufficiency for CFETR Using a PWR Water-Cooled Blanket [J].
Liu, Changle ;
Yao, Damao ;
Gao, Xiang ;
Wang, Zhaoliang ;
Liang, Chao ;
Zhou, Zibo ;
Cao, Lei ;
Xu, Tiejun .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (06) :1759-1763
[6]   Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology [J].
Liu, S. ;
Ma, X. ;
Jiang, K. ;
Cheng, X. ;
Huang, K. ;
Neilsion, H. ;
Khodak, A. ;
Titus, P. .
FUSION ENGINEERING AND DESIGN, 2017, 124 :865-870
[7]   Conceptual design of a water cooled breeder blanket for CFETR [J].
Liu, Songlin ;
Pu, Yong ;
Cheng, Xiaoman ;
Li, Jia ;
Peng, ChangHong ;
Ma, Xuebing ;
Chen, Lei .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :1380-1385
[8]  
Liu X., 2016, NUCL FUSION, V57
[9]   Mechanical performance evaluation of the CFETR central solenoid model coil design [J].
Liu, Xiaogang ;
Wang, Zhaoliang ;
Ren, Yong ;
Li, Junjun ;
Yin, Dapeng ;
Li, Lei ;
Gao, Xiang ;
Wu, Yu .
NUCLEAR FUSION, 2018, 58 (01)
[10]   Electromagnetic Optimization and Preliminary Mechanical Analysis of the CFETR CS Model Coil [J].
Liu, Xiaogang ;
Wang, Xianwei ;
Wang, Zhaoliang ;
Yin, Dapeng ;
Wu, Yu .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (09) :1559-1563