Flexural gravity wave scattering by multiple articulated floating elastic plates is investigated in the three cases for water of finite depth, infinite depth and shallow water approximation under the assumptions of two-dimensional linearized theory of water waves. The elastic plates are joined through connectors, which act as articulated joints. In the case when two semi-infinite plates are connected through a single articulation, using the symmetric characteristic of the plate geometry and the expansion formulae for wave-structure interaction problem, the velocity potentials are obtained in closed forms in the case of finite and infinite water depths. On the other hand, in the case of shallow water approximation, the continuity of energy and mass flux are used to obtain a system of equations for the determination of the full velocity potentials for wave scattering by multiple articulations. Further, using the results for single articulation and assuming that the articulated joints are wide apart, the wide-spacing approximation method is used to obtain the reflection coefficient for wave scattering due to multiple articulated floating elastic plates. The effects of the stiffness of the connectors, length of the elastic plates and water depth on the propagation of flexural gravity waves are investigated by analysing the reflection coefficient. (C) 2009 Elsevier Ltd. All rights reserved.