Application of energy-balance model from gas discharge to single-surface multipactor

被引:11
作者
Wang, Huihui [1 ]
Bai, Xianchen [2 ]
Liu, Laqun [1 ]
Liu, Dagang [1 ]
Meng, Lin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
[2] Northwest Inst Nucl Technol, Sci & Technol High Power Microwave Lab, Xian 710024, Peoples R China
基金
中国国家自然科学基金;
关键词
gas discharge; particle-in-cell simulation; dielectric breakdown; single-surface multipactor; energy balance; electric field power; BREAKDOWN; EMISSION; FIELD;
D O I
10.1088/1361-6595/abc5a4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A unified theory of multipactor discharge on a dielectric is proposed by utilizing the similarity of the energy balance between multipactor and collisional gas discharge. In this theory, the electron energy gain in multipactor is predicted using the classical formulas for the electric field powers in gas discharge, and the electron energy loss is caused by electron bombardment to the dielectric surface. As with kinetic effects in collisional gas discharge, the electron energy distribution function is important in saturated multipactor. Due to the complex energy distribution functions in saturated multipactor, the average bombardment electron energies are varied and much larger than the traditional predicted value indicated by the first crossover of unity in the secondary electron yield. Using the proposed energy-balance model, multipactor in envelope microwaves and multipactor under an extra magnetic field are both theoretically predicted. The theoretical results for the surface-normal accumulative electric field and the deposited power in saturated multipactor are consistent with the results from electromagnetic particle-in-cell (PIC) simulations.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Power deposited on a dielectric by multipactor [J].
Ang, LK ;
Lau, YY ;
Kishek, RA ;
Gilgenbach, RM .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (03) :290-295
[2]   Multipactor theory for multicarrier signals [J].
Anza, S. ;
Mattes, M. ;
Vicente, C. ;
Gil, J. ;
Raboso, D. ;
Boria, V. E. ;
Gimeno, B. .
PHYSICS OF PLASMAS, 2011, 18 (03)
[3]   Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation [J].
Booske, John H. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[4]   Microwave discharge on a dielectric surface in vacuum [J].
Brizhinev, MP ;
Golubev, SV ;
Dorozhkina, DS ;
Eremin, BG ;
Zorin, VG ;
Litvak, AG ;
Plotnikov, IV ;
Razin, SV ;
Semenov, VE ;
Strikovskii, AV ;
Tolkacheva, ON .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 92 (06) :986-990
[5]   Instability, collapse, and oscillation of sheaths caused by secondary electron emission [J].
Campanell, M. D. ;
Khrabrov, A. V. ;
Kaganovich, I. D. .
PHYSICS OF PLASMAS, 2012, 19 (12)
[6]   Enhanced window breakdown dynamics in a nanosecond microwave tail pulse [J].
Chang, Chao ;
Zhu, Meng ;
Verboncoeur, John ;
Li, Shuang ;
Xie, Jialing ;
Yan, Kai ;
Luo, Tongding ;
Zhu, Xiaoxin .
APPLIED PHYSICS LETTERS, 2014, 104 (25)
[7]   Review of recent theories and experiments for improving high-power microwave window breakdown thresholds [J].
Chang, Chao ;
Liu, Guozhi ;
Tang, Chuanxiang ;
Chen, Changhua ;
Fang, Jinyong .
PHYSICS OF PLASMAS, 2011, 18 (05)
[8]   Experimental Investigation of Electron Emission from Dielectric Surfaces Due to Primary Electron Beam: A Review [J].
Chvyreva, A. ;
Pemen, A. J. M. .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2014, 21 (05) :2274-2282
[9]   Probabilistic model for the simulation of secondary electron emission [J].
Furman, MA ;
Pivi, MTF .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2002, 5 (12) :82-99
[10]   Temporal multiparticle Monte Carlo simulation of dual frequency single surface multipactor [J].
Iqbal, Asif ;
Verboncoeur, John ;
Zhang, Peng .
PHYSICS OF PLASMAS, 2019, 26 (02)