Hamiltonian Systems Admitting a Runge-Lenz Vector and an Optimal Extension of Bertrand's Theorem to Curved Manifolds

被引:42
作者
Ballesteros, Angel [1 ]
Enciso, Alberto [2 ]
Herranz, Francisco J. [1 ]
Ragnisco, Orlando [3 ,4 ]
机构
[1] Univ Burgos, Dept Fis, Burgos 09001, Spain
[2] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[3] Univ Roma 3, Dip Fis, I-00146 Rome, Italy
[4] Ist Nazl Fis Nucl, I-00146 Rome, Italy
关键词
SUPERINTEGRABLE SYSTEMS; DYNAMICAL SYMMETRIES; BOUNDED TRAJECTORIES; KILLING TENSORS; MONOPOLES; SPACE; SCATTERING; CONSTANT; GEOMETRY;
D O I
10.1007/s00220-009-0793-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bertrand's theorem asserts that any spherically symmetric natural Hamiltonian system in Euclidean 3-space which possesses stable circular orbits and whose bounded trajectories are all periodic is either a harmonic oscillator or a Kepler system. In this paper we extend this classical result to curved spaces by proving that any Hamiltonian on a spherically symmetric Riemannian 3-manifold which satisfies the same conditions as in Bertrand's theorem is superintegrable and given by an intrinsic oscillator or Kepler system. As a byproduct we obtain a wide panoply of new superintegrable Hamiltonian systems. The demonstration relies on Perlick's classification of Bertrand spacetimes and on the construction of a suitable, globally defined generalization of the Runge-Lenz vector.
引用
收藏
页码:1033 / 1049
页数:17
相关论文
共 51 条
[1]   LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES [J].
ATIYAH, MF ;
HITCHIN, NJ .
PHYSICS LETTERS A, 1985, 107 (01) :21-25
[2]   A maximally superintegrable system on an n-dimensional space of nonconstant curvature [J].
Ballesteros, A. ;
Enciso, A. ;
Herranz, F. J. ;
Ragnisco, O. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) :505-509
[3]   Maximal superintegrability on N-dimensional curved spaces [J].
Ballesteros, A ;
Herranz, FJ ;
Santander, M ;
Sanz-Gil, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L93-L99
[4]   Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) :F51-F59
[5]   Bertrand spacetimes as Kepler/oscillator potentials [J].
Ballesteros, Angel ;
Enciso, Alberto ;
Herranz, Francisco J. ;
Ragnisco, Orlando .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (16)
[6]  
Bertrand J., 1873, C. R. Acad. Sci, V77, P849
[7]   Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime [J].
Bini, D ;
Cherubini, C ;
Jantzen, RT ;
Mashhoon, B .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (03) :457-468
[8]   Theory of tensor invariants of integrable Hamiltonian systems .2. Theorem on symmetries and its applications [J].
Bogoyavlenskij, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :301-365
[9]  
BRAAM PJ, 1989, J DIFFER GEOM, V30, P425
[10]   Nahm transform for periodic monopoles and N=2 super Yang-Mills theory [J].
Cherkis, S ;
Kapustin, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) :333-371