On the identifiability of inertia parameters of planar Multi-Body Space Systems

被引:6
作者
Nabavi-Chashmi, Seyed Yaser [1 ]
Malaek, Seyed Mohammad-Bagher [1 ]
机构
[1] Sharif Univ Technol, Dept Aerosp, Tehran, Iran
关键词
Space robotics; Inertia parameters; Parameter identification; Multi-body system dynamics; IDENTIFICATION; DYNAMICS; REMOVAL; ROBOT;
D O I
10.1016/j.actaastro.2018.01.047
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.
引用
收藏
页码:199 / 215
页数:17
相关论文
共 50 条
[31]   Study on the topological structure of generalized multi-body system [J].
Ma, GQ ;
Cu, GQ ;
Li, GP ;
Tan, RH .
Proceedings of the International Conference on Mechanical Engineering and Mechanics 2005, Vols 1 and 2, 2005, :753-756
[32]   Multi-body model of a bobsleigh: comparison with experimental data [J].
Braghin, Francesco ;
Cheli, Federico ;
Donzelli, Mauro ;
Melzi, Stefano ;
Sabbioni, Edoardo .
MULTIBODY SYSTEM DYNAMICS, 2011, 25 (02) :185-201
[33]   Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems [J].
R. Serban ;
J.S. Freeman .
Multibody System Dynamics, 2001, 5 :335-350
[34]   Designing evolvable libraries using multi-body potentials [J].
Lappe, Michael ;
Bagler, Ganesh ;
Filippis, Ioannis ;
Stehr, Henning ;
Duarte, Jose M. ;
Sathyapriya, Rajagopal .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (04) :437-446
[35]   Finite element modelling of geared multi-body system [J].
Wang, Y ;
Cheung, HME ;
Zhang, WJ .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (11) :765-778
[36]   Inverse problem for multi-body interaction of nonlinear waves [J].
Marruzzo, Alessia ;
Tyagi, Payal ;
Antenucci, Fabrizio ;
Pagnani, Andrea ;
Leuzzi, Luca .
SCIENTIFIC REPORTS, 2017, 7
[37]   Aeroelastic stability of a symmetric multi-body section model [J].
Lepidi, Marco ;
Piccardo, Giuseppe .
MECCANICA, 2015, 50 (03) :731-749
[38]   On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics [J].
Xu, Wenfu ;
Hu, Zhonghua ;
Zhang, Yu ;
Liang, Bin .
ACTA ASTRONAUTICA, 2017, 132 :131-142
[39]   Identification of rigid body inertia properties by utilizing modal parameters436 [J].
Zhang Y. ;
Hou Z.-C. .
Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2016, 29 (03) :436-443
[40]   Aerodynamics Characteristics and Flight Dynamics Analysis of Multi-body Aircraft [J].
An, Chao ;
Wang, Linpu ;
Xie, Changchuan ;
Yang, Chao .
PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 1, 2023, 912 :375-384