Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

被引:38
作者
Baginska, Marta [1 ,2 ]
Blaiszik, Benjamin J. [4 ]
Rajh, Tijana [4 ]
Sottos, Nancy R. [2 ,3 ]
White, Scott R. [1 ,2 ]
机构
[1] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
Li-ion batteries; Thermal shutdown; Polyethylene microspheres; Polydopamine coating; MECHANISMS; SEPARATOR;
D O I
10.1016/j.jpowsour.2014.07.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm(-2) of PDA-coated microspheres to the electrode. The PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:735 / 739
页数:5
相关论文
共 13 条
  • [1] [Anonymous], 2013, INT FACT REP
  • [2] Battery separators
    Arora, P
    Zhang, ZM
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4419 - 4462
  • [3] Baginska M., 2012, Advanced Energy Materials, V2, P497
  • [4] Safety mechanisms in lithium-ion batteries
    Balakrishnan, PG
    Ramesh, R
    Kumar, TP
    [J]. JOURNAL OF POWER SOURCES, 2006, 155 (02) : 401 - 414
  • [5] Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance
    Chung, Y. S.
    Yoo, S. H.
    Kim, C. K.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (09) : 4346 - 4351
  • [6] Polyethylene characterization by FTIR
    Gulmine, JV
    Janissek, PR
    Heise, HM
    Akcelrud, L
    [J]. POLYMER TESTING, 2002, 21 (05) : 557 - 563
  • [7] Separator technologies for lithium-ion batteries
    Huang, Xiaosong
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (04) : 649 - 662
  • [8] Mikolajczak C., 2011, LITHIUM ION BATTERIE
  • [9] Effects of separator breakdown on abuse response of 18650 Li-ion cells
    Roth, E. P.
    Doughty, D. H.
    Pile, D. L.
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 579 - 583
  • [10] Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries
    Ryou, Myung-Hyun
    Lee, Yong Min
    Park, Jung-Ki
    Choi, Jang Wook
    [J]. ADVANCED MATERIALS, 2011, 23 (27) : 3066 - +