Recent advances, challenges and prospects of in situ production of hydrogen peroxide for textile wastewater treatment in microbial fuel cells

被引:31
|
作者
Asghar, Anam [1 ]
Raman, Abdul Aziz Abdul [1 ]
Daud, Wan Mohd Ashri Wan [1 ]
机构
[1] Univ Malaya, Dept Chem Engn, Fac Engn, Kuala Lumpur 50603, Malaysia
关键词
microbial fuel cells; in situ hydrogen peroxide; Fenton oxidation; power density; anode modification; ELECTRICITY-GENERATION; POWER-GENERATION; MARINE SEDIMENT; COLOR REMOVAL; MEDIATOR-LESS; COD REMOVAL; AZO-DYE; SIMULTANEOUS DECOLORIZATION; PHOTOCATALYTIC DEGRADATION; ELECTROCHEMICAL OXIDATION;
D O I
10.1002/jctb.4460
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Application of the Fenton process for textile wastewater treatment is limited due to high treatment cost, substantially contributed by the un-availability of cheap hydrogen peroxide. Therefore, alternative methods for hydrogen peroxide production are in demand. One such option is in situ hydrogen peroxide production using a wastewater based microbial fuel cell (WBMFC). However, not much have been published regarding in situ production of hydrogen peroxide for textile wastewater treatment in a WBMFC. Therefore, in this work the concept, advantages, challenges and prospects of using WBMFC to treat textile wastewater by simultaneously producing hydrogen peroxide (hence in situ hydrogen peroxide) and power are reviewed. The concept of WBMFC is the reduction of oxygen in the presence of electrons and protons from the anode chamber to produce hydrogen peroxide with simultaneous power production. This review confirms that use of dual chambers, proton exchange membrane, domestic or municipal wastewater/Geobacter Sulfurreducens or Shewanella species, pure graphite cathode, ammonia and heat treated carbon-based anode can treat most textile wastewaters. However, single chamber WBMFCs can be used as a low power source for an electro-Fenton reactor. Power produced can be used to provide energy for aeration required in the WBMFC, thus providing an integrated and sustainable solution for textile wastewater treatment. (c) 2014 Society of Chemical Industry
引用
收藏
页码:1466 / 1480
页数:15
相关论文
共 50 条
  • [11] TEXTILE WASTEWATER TREATMENT BY HOMOGENEOUS OXIDATION WITH HYDROGEN PEROXIDE
    Zaharia, Carmen
    Suteu, Daniela
    Muresan, Augustin
    Muresan, Rodica
    Popescu, Alina
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2009, 8 (06): : 1359 - 1369
  • [12] MICROBIAL FUEL CELLS - AN OPTION FOR WASTEWATER TREATMENT
    Duteanu, Narcis Mihai
    Ghangrekar, Makarand Madhao
    Erable, Benjamin
    Scott, Keith
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2010, 9 (08): : 1069 - 1087
  • [13] Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals
    Kadier, Abudukeremu
    Kalil, Mohd Sahaid
    Abdeshahian, Peyman
    Chandrasekhar, K.
    Mohamed, Azah
    Azman, Nadia Farhana
    Logrono, Washington
    Simayi, Yibadatihan
    Hamid, Aidil Abdul
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 61 : 501 - 525
  • [14] Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells
    Kumar, G. Gnana
    Sarathi, V. G. Sathiya
    Nahm, Kee Suk
    BIOSENSORS & BIOELECTRONICS, 2013, 43 : 461 - 475
  • [15] Microfluidic microbial fuel cells: Recent advancements and future prospects
    Parkhey, Piyush
    Sahu, Reecha
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (04) : 3105 - 3123
  • [16] ELECTRICITY PRODUCTION COUPLED WITH WASTEWATER TREATMENT USING MICROBIAL FUEL CELL
    Vineetha, V.
    Shibu, K.
    2013 INTERNATIONAL CONFERENCE ON ENERGY EFFICIENT TECHNOLOGIES FOR SUSTAINABILITY (ICEETS), 2013,
  • [17] Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery
    Pandey, Prashant
    Shinde, Vikas N.
    Deopurkar, Rajendra L.
    Kale, Sharad P.
    Patil, Sunil A.
    Pant, Deepak
    APPLIED ENERGY, 2016, 168 : 706 - 723
  • [18] Recent advances in the separators for microbial fuel cells
    Li, Wen-Wei
    Sheng, Guo-Ping
    Liu, Xian-Wei
    Yu, Han-Qing
    BIORESOURCE TECHNOLOGY, 2011, 102 (01) : 244 - 252
  • [19] Microscale microbial fuel cells: Advances and challenges
    Choi, Seokheun
    BIOSENSORS & BIOELECTRONICS, 2015, 69 : 8 - 25
  • [20] Wastewater treatment and energy production by microbial fuel cells
    Sufiyan Siddiqui
    Pranshul Bhatnagar
    Sahej Dhingra
    Utkarsh Upadhyay
    I. Sreedhar
    Biomass Conversion and Biorefinery, 2023, 13 : 3569 - 3592