The propagation of waves in thin-film ferroelectric materials

被引:38
作者
Souleymanou, Abbagari [1 ,2 ,3 ,4 ]
Ali, Khalid K. [5 ]
Rezazadeh, Hadi [6 ]
Eslami, Mostafa [7 ]
Mirzazadeh, Mohammad [8 ]
Korkmaz, Alper [9 ]
机构
[1] Univ Yaounde I, Natl Adv Sch Engn, POB 8390, Yaounde, Cameroon
[2] Univ Yaounde I, Dept Phys, Lab Mech Mat & Struct, POB 812, Yaounde, Cameroon
[3] Univ Yaounde I, CETIC, POB 8390, Yaounde, Cameroon
[4] Univ Maroua, Fac Mines & Petr Ind, Dept Basic Sci, POB 46, Maroua, Cameroon
[5] Al Azhar Univ, Fac Sci, Math Dept, Cairo, Egypt
[6] Amol Univ Special Modern Technol, Fac Modern Technol Engn, Amol, Iran
[7] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[8] Univ Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar Vajargah, Iran
[9] CAKU, Dept Math, Cankiri, Turkey
来源
PRAMANA-JOURNAL OF PHYSICS | 2019年 / 93卷 / 02期
关键词
Thin-film ferrroelectric materials; extended tanh method; bright soliton; SOLITONS; EQUATION;
D O I
10.1007/s12043-019-1774-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear evolution equation describing the propagation of waves in thin-film ferrroelectric materials is investigated in detail. The modified extended tanh method is used for the purpose and, as a result, novel soliton solutions are derived analytically which show the shape and the width of the waves. In the construction of the solutions obtained, it appears that bright and singular waves can be propagated in thin-film ferroelectric materials.
引用
收藏
页数:6
相关论文
共 32 条
[11]   NEW FORM OF BACKLUND TRANSFORMATIONS AND ITS RELATION TO INVERSE SCATTERING PROBLEM [J].
HIROTA, R .
PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (05) :1498-1512
[12]   Solitons in thin-film ferroelectric material [J].
Hubert, Malwe Boudoue ;
Justin, Mibaile ;
Kudryashov, Nikolai A. ;
Betchewe, Gambo ;
Douvagai ;
Doka, Serge Y. .
PHYSICA SCRIPTA, 2018, 93 (07)
[13]   Multisoliton solutions, completely elastic collisions and non-elastic fusion phenomena of two PDEs [J].
Khatun, Mst Shekha ;
Hoque, Md Fazlul ;
Rahman, Md Azizur .
PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (06)
[14]   Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity [J].
Khodadad, Farid Samsami ;
Nazari, Fakhroddin ;
Eslami, Mostafa ;
Rezazadeh, Hadi .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)
[15]   Explicit exact solutions to some one-dimensional conformable time fractional equations [J].
Korkmaz, Alper .
WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (01) :124-137
[16]   Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods [J].
Korkmaz, Alper ;
Hosseini, Kamyar .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (08)
[17]   Exact Solutions to (3+1) Conformable Time Fractional Jimbo-Miwa, Zakharov-Kuznetsov and Modified Zakharov-Kuznetsov Equations [J].
Korkmaz, Alper .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 67 (05) :479-482
[18]   Exact solutions of space-time fractional EW and modified EW equations [J].
Korkmaz, Alper .
CHAOS SOLITONS & FRACTALS, 2017, 96 :132-138
[19]   Single-oscillation two-dimensional solitons of magnetic polaritons [J].
Leblond, H. ;
Manna, M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (06)
[20]   Painleve integrability of two sets of nonlinear evolution equations with nonlinear dispersions [J].
Lou, SY ;
Wu, QX .
PHYSICS LETTERS A, 1999, 262 (4-5) :344-349