In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction

被引:1
作者
Chen Xiao-Hui [1 ]
Tan Bo-Zhong [1 ]
Xue Tao [1 ]
Ma Yun-Can [1 ]
Jin Sai [2 ]
Li Zhi-Jun [2 ]
Xin Yue-Feng [1 ]
Li Xiao-Ya [1 ]
Li Jun [1 ]
机构
[1] China Acad Engn Phys, Inst Fluid Phys, Natl Key Lab Shock Wave & Detonat Phys, Mianyang 621900, Sichuan, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
high-strain-rate loading; in situ X-ray diffraction; shock-induced phase transition; high power laser facility; IRON;
D O I
10.7498/aps.69.20200929
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than 10(6) s(-1). However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate (> 10(6) s(-1)) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an in situ X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The in situ observation of material phase transition under high-strainrate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in in situ X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of 10(8) - 10(9) s(-1). The available of the presented in situ X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Kinetics of the iron α-ε phase transition at high-strain rates: Experiment and model [J].
Amadou, N. ;
de Resseguier, T. ;
Brambrink, E. ;
Vinci, T. ;
Benuzzi-Mounaix, A. ;
Huser, G. ;
Morard, G. ;
Guyot, F. ;
Miyanishi, K. ;
Ozaki, N. ;
Kodama, R. ;
Koenig, M. .
PHYSICAL REVIEW B, 2016, 93 (21)
[2]  
Armstrong MR, 2018, ARXIV180802181V1
[3]   SHOCK-WAVE STUDY OF ALPHA REVERSIBLE EPSILON-PHASE TRANSITION IN IRON [J].
BARKER, LM ;
HOLLENBACH, RE .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (11) :4872-4881
[4]   Hugoniot data for iron [J].
Brown, JM ;
Fritz, JN ;
Hixson, RS .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (09) :5496-5498
[5]   Graphical method for analyzing wide-angle x-ray diffraction [J].
Chen, XiaoHui ;
Xue, Tao ;
Liu, DongBing ;
Yang, QingGuo ;
Luo, BinQiang ;
Li, Mu ;
Li, XiaoYa ;
Li, Jun .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (01)
[6]   Identification of Phase Transitions and Metastability in Dynamically Compressed Antimony Using Ultrafast X-Ray Diffraction [J].
Coleman, A. L. ;
Gorman, M. G. ;
Briggs, R. ;
McWilliams, R. S. ;
McGonegle, D. ;
Bolme, C. A. ;
Gleason, A. E. ;
Fratanduono, D. E. ;
Smith, R. F. ;
Galtier, E. ;
Lee, H. J. ;
Nagler, B. ;
Granados, E. ;
Collins, G. W. ;
Eggert, J. H. ;
Wark, J. S. ;
McMahon, M. I. .
PHYSICAL REVIEW LETTERS, 2019, 122 (25)
[7]  
Coppari F, 2013, NAT GEOSCI, V6, P926, DOI [10.1038/ngeo1948, 10.1038/NGEO1948]
[8]   Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa [J].
Denoeud, Adrien ;
Ozaki, Norimasa ;
Benuzzi-Mounaix, Alessandra ;
Uranishi, Hiroyuki ;
Kondo, Yoshihiko ;
Kodama, Ryosuke ;
Brambrink, Erik ;
Ravasio, Alessandra ;
Bocoum, Maimouna ;
Boudenne, Jean-Michel ;
Harmand, Marion ;
Guyot, Francois ;
Mazevet, Stephane ;
Riley, David ;
Makita, Mikako ;
Sano, Takayoshi ;
Sakawa, Youichi ;
Inubushi, Yuichi ;
Gregori, Gianluca ;
Koenig, Michel ;
Morard, Guillaume .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (28) :7745-7749
[9]   Structural phase transition of vanadium at 69 GPa [J].
Ding, Yang ;
Ahuja, Rajeev ;
Shu, Jinfu ;
Chow, Paul ;
Luo, Wei ;
Mao, Ho-kwang .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[10]   X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10-70 GPa [J].
Foster, J. M. ;
Comley, A. J. ;
Case, G. S. ;
Avraam, P. ;
Rothman, S. D. ;
Higginbotham, A. ;
Floyd, E. K. R. ;
Gumbrell, E. T. ;
Luis, J. J. D. ;
McGonegle, D. ;
Park, N. T. ;
Peacock, L. J. ;
Poulter, C. P. ;
Suggit, M. J. ;
Wark, J. S. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (02)