Flexible operation of post-combustion CO2 capture at pilot scale with demonstration of capture-efficiency control using online solvent measurements

被引:23
作者
Tait, Paul [1 ]
Buschle, Bill [1 ]
Milkowski, Kris [2 ]
Akram, Muhammad [2 ]
Pourkashanian, Mohamed [2 ]
Lucquiaud, Mathieu [1 ]
机构
[1] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[2] Univ Sheffield, Sheffield, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Post-combustion; Pilot; Flexibility; Control; Coal; POWER-PLANTS; OPTIMIZATION; FLEXIBILITY; CCS;
D O I
10.1016/j.ijggc.2018.02.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flexible post-combustion carbon capture and storage (CCS) has the potential to play a significant part in the affordable decarbonisation of electricity generation portfolios. PCC plant operators can modify capture plant process variables to adjust the CO2 capture level to a value which is optimal for current fuel cost, electricity selling price and CO2 emissions costs, increasing short-term profitability. Additionally, variation of the level of steam extraction from the generation plant can allow the capture facility to provide additional operating flexibility for coal-fired power stations which are comparatively slow to change output. A pilot-scale test campaign investigates the response of plant operating parameters to dynamic scenarios which are designed to be representative of pulverised coal plant operation. Online sensors continuously monitor changes in rich and lean solvent CO2 loading (30% wt monoethanolamine). Solvent loading is likely to be a critical control variable for the optimisation of flexible PCC operation, and since economic and operational boundaries can change on timescales 30 min or shorter, the development of methods for rapid, continuous online solvent analysis is key. Seven dynamic datasets are produced and insights about plant response times and hydrodynamics are provided. These include power output maximisation, frequency response, power output ramping and a comparison between two plant start-up strategies. In the final dynamic operating scenario, control of CO2 capture efficiency for a simple reboiler steam decoupling and reintroduction event is demonstrated using only knowledge of plant hydrodynamics and continuous measurement of solvent lean loading. Hot water flow to the reboiler is reduced to drop the capture efficiency. The "target" value for the minimum capture efficiency in the scenario was set at 30%, but a minimum CO2 capture efficiency of 26.4% was achieved. While there remains scope for improvement this represents a significant practical step towards the control of capture plant using online solvent concentration and CO2 measurements, and the next steps for its further development are discussed.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 50 条
  • [21] Post-combustion of mazut with CO2 capture using aspen hysys
    Sinaki, S. Younessi
    Atabi, F.
    Panjeshahi, M. H.
    Moattar, F.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (20) : 2122 - 2127
  • [22] Benchmarking of the pre/post-combustion chemical absorption for the CO2 capture
    Dinca, Cristian
    Slavu, Nela
    Badea, Adrian
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (03) : 445 - 456
  • [23] Systematic selection of amine mixtures as post-combustion CO2 capture solvent candidates
    Zarogiannis, Theodoros
    Papadopoulos, Athanasios I.
    Seferlis, Panos
    JOURNAL OF CLEANER PRODUCTION, 2016, 136 : 159 - 175
  • [24] Control of Solvent-Based Post-Combustion Carbon Capture Process with Optimal Operation Conditions
    Chen, Yih-Hang
    Shen, Ming-Tien
    Chang, Hsuan
    Ho, Chii-Dong
    PROCESSES, 2019, 7 (06):
  • [25] Evaluation of amine emissions from the post-combustion CO2 capture pilot plant
    Fujita, Koshito
    Muraoka, Daigo
    Ogawa, Takashi
    Kitamura, Hideo
    Suzuki, Kensuke
    Saito, Satoshi
    GHGT-11, 2013, 37 : 727 - 734
  • [26] Thermal degradation of morpholine in CO2 post-combustion capture
    Ogidi, Michael O.
    Thompson, Warren A.
    Maroto-Valer, M. Mercedes
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1033 - 1037
  • [27] Highly efficient absorbents for post-combustion CO2 capture
    Shim, Jae-Goo
    Kim, Jun-Han
    Lee, Ji Hyun
    Jang, Kyung-Ryong
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 779 - 782
  • [28] Cascaded Membrane Processes for Post-Combustion CO2 Capture
    Zhao, Li
    Riensche, Ernst
    Weber, Michael
    Stolten, Detlef
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (03) : 489 - 496
  • [29] Numerical Evaluation of CO2 Capture on Post-combustion Processes
    Chavez, Rosa-Hilda
    Guadarrama, Javier J.
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 271 - 276
  • [30] Development of adsorbent technologies for post-combustion CO2 capture
    Drage, T. C.
    Smith, K. M.
    Pevida, C.
    Arenillas, A.
    Snape, C. E.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 881 - 884