A study of the characteristics of white noise using the empirical mode decomposition method

被引:1619
|
作者
Wu, ZH
Huang, NE
机构
[1] Ctr Ocean Land Atmosphere Studies, Beltsville, MD 20705 USA
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2046期
关键词
empirical mode decomposition; intrinsic mode function; characteristics of white noise; energy-density function; energy-density spread function; statistical significance test;
D O I
10.1098/rspa.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter., the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area, on a semi-logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy-density function is chi-squared distributed. Furthermore, we derive the energy-density spread function of the IMF components. Through these results, we establish a, method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data, are used to illustrate the methodology developed here.
引用
收藏
页码:1597 / 1611
页数:15
相关论文
共 50 条
  • [31] An Improved Approach for Suppressing Noise Based on Empirical Mode Decomposition
    Liu, Baotong
    2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2015, : 1858 - 1862
  • [32] On the FPGA Implementation Of Empirical Mode Decomposition Algorithm Using FPGA
    Kose, Ihsan
    Celebi, Anil
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [33] Rotating machine fault diagnosis using empirical mode decomposition
    Gao, Q.
    Duan, C.
    Fan, H.
    Meng, Q.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (05) : 1072 - 1081
  • [34] Dental Contour Extraction Using Window Empirical Mode Decomposition
    Liu, Wei
    Sun, Guoxia
    Sun, Huiqiang
    Li, Hui
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 847 - +
  • [35] A robust method for parameter estimation of AR systems using empirical mode decomposition
    Hasan, Md. Kamrul
    Apu, M. Shakib
    Molla, Md. Khademul Islam
    SIGNAL IMAGE AND VIDEO PROCESSING, 2010, 4 (04) : 451 - 461
  • [36] A NEW INFRARED IMAGE FUSION METHOD USING EMPIRICAL MODE DECOMPOSITION AND INPAINTING
    Sun, Yu-Qiu
    Koh, M. S.
    Rodriguez-Marek, E.
    Talarico, C.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1477 - 1480
  • [37] Underwater target feature extraction using empirical mode decomposition and WVD method
    Sun, Shijun
    Li, Xiukun
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2013, 34 (08): : 967 - 971
  • [38] Identification of nonlinear normal modes of structures using the Empirical Mode Decomposition method
    Poon, CW
    Chang, CC
    SMART STRUCTURES AND MATERIALS 2005: SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE, PTS 1 AND 2, 2005, 5765 : 881 - 891
  • [39] An improved method for measuring mismatch negativity using ensemble empirical mode decomposition
    Hsu, Chun-Hsien
    Lee, Chia-Ying
    Liang, Wei-Kuang
    JOURNAL OF NEUROSCIENCE METHODS, 2016, 264 : 78 - 85
  • [40] Contactless respiration rate measurement using optical method and empirical mode decomposition
    Gan, K. B.
    Yahyavi, E. S.
    Ismail, M. S.
    TECHNOLOGY AND HEALTH CARE, 2016, 24 (05) : 761 - 768