A study of the characteristics of white noise using the empirical mode decomposition method

被引:1619
|
作者
Wu, ZH
Huang, NE
机构
[1] Ctr Ocean Land Atmosphere Studies, Beltsville, MD 20705 USA
[2] NASA, Goddard Space Flight Ctr, Lab Hydrospher Proc, Oceans & Ice Branch, Greenbelt, MD 20771 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2046期
关键词
empirical mode decomposition; intrinsic mode function; characteristics of white noise; energy-density function; energy-density spread function; statistical significance test;
D O I
10.1098/rspa.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter., the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area, on a semi-logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy-density function is chi-squared distributed. Furthermore, we derive the energy-density spread function of the IMF components. Through these results, we establish a, method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data, are used to illustrate the methodology developed here.
引用
收藏
页码:1597 / 1611
页数:15
相关论文
共 50 条
  • [11] MEG Data Analysis Using the Empirical Mode Decomposition Method
    Skiteva, Lyudmila
    Trofimov, Aleksandr
    Ushakov, Vadim
    Malakhov, Denis
    Velichkovsky, Boris M.
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA) FOR YOUNG SCIENTISTS, 2016, 449 : 135 - 140
  • [12] Improving the empirical mode decomposition method
    Sanchez, Jose L.
    Trujillo, Juan J.
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 689 - 713
  • [13] Noise-robust speech feature processing with empirical mode decomposition
    Wu, Kuo-Hau
    Chen, Chia-Ping
    Yeh, Bing-Feng
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2011, : 1 - 9
  • [14] Noise-robust speech feature processing with empirical mode decomposition
    Kuo-Hau Wu
    Chia-Ping Chen
    Bing-Feng Yeh
    EURASIP Journal on Audio, Speech, and Music Processing, 2011
  • [15] An Efficient Noise Reduction Algorithm Using Empirical Mode Decomposition and Correlation Measurement
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Jheng, Jyun-Hong
    Tsai, Tsung-Ying
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2008), 2008, : 286 - 289
  • [16] Suppression of Residual Noise From Speech Signals Using Empirical Mode Decomposition
    Hasan, Taufiq
    Hasan, Md. Kamrul
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (1-3) : 2 - 5
  • [17] A COMPLETE ENSEMBLE EMPIRICAL MODE DECOMPOSITION WITH ADAPTIVE NOISE
    Torres, Maria E.
    Colominas, Marcelo A.
    Schlotthauer, Gaston
    Flandrin, Patrick
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4144 - 4147
  • [18] Noise reduction method based on empirical mode decomposition and wavelet analysis for force signal
    Zhang, Zihao
    Dai, Yu
    Yao, Bin
    Zhang, Jianxun
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2923 - 2928
  • [19] Evaluation of dynamic speckle activity using the empirical mode decomposition method
    Federico, Alejandro
    Kaufmann, Guillermo H.
    OPTICS COMMUNICATIONS, 2006, 267 (02) : 287 - 294
  • [20] A New Eddy-Covariance Method Using Empirical Mode Decomposition
    Barnhart, B. L.
    Eichinger, W. E.
    Prueger, J. H.
    BOUNDARY-LAYER METEOROLOGY, 2012, 145 (02) : 369 - 382