The nonlinear Schrodinger equation with an inverse-square potential

被引:4
|
作者
Murphy, Jason [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
来源
NONLINEAR DISPERSIVE WAVES AND FLUIDS | 2019年 / 725卷
关键词
SCATTERING; NLS;
D O I
10.1090/conm/725/14560
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss recent results on the scattering/blow-up dichotomy below the ground state threshold for the focusing nonlinear Schrodinger equation with an inverse-square potential and a nonlinearity that is mass-supercritical and energy-subcritical.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条
  • [21] Semiclassical treatment of an attractive inverse-square potential in an elastic medium with a disclination
    Bakke, K.
    Furtado, C.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (12)
  • [22] Scattering threshold for a focusing inhomogeneous non-linear Schrodinger equation with inverse square potential
    Boulaaras, Salah
    Ghanmi, Radhia
    Saanouni, Tarek
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [23] A NONLINEAR SCHRODINGER EQUATION WITH COULOMB POTENTIAL
    Miao, Changxing
    Zhang, Junyong
    Zheng, Jiqiang
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (06) : 2230 - 2256
  • [24] SCATTERING FOR A NONLINEAR SCHRODINGER EQUATION WITH A POTENTIAL
    Hong, Younghun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1571 - 1601
  • [25] On stability and instability of the ground states for the focusing inhomogeneous NLS with inverse-square potential
    An, JinMyong
    Mun, HakBom
    Kim, JinMyong
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (06) : 2647 - 2666
  • [26] Blow-up versus global well-posedness for the focusing INLS with inverse-square potential
    Deng, Mingming
    Lu, Jing
    Meng, Fanfei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) : 3285 - 3293
  • [27] On Traveling Waves of the Nonlinear Schrodinger Equation Escaping a Potential Well
    Naumkin, Ivan
    Raphael, Pierre
    ANNALES HENRI POINCARE, 2020, 21 (05): : 1677 - 1758
  • [28] Scattering solutions to nonlinear Schrodinger equation with a long range potential
    Hamano, Masaru
    Ikeda, Masahiro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [29] Point-particle effective field theory I: classical renormalization and the inverse-square potential
    Burgess, C. P.
    Hayman, Peter
    Williams, M.
    Zalavari, Laszlo
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [30] Inverse problem for a random Schrodinger equation with unknown source and potential
    Liu, Hongyu
    Ma, Shiqi
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (02)