REGULAR TRAVELING WAVES FOR A REACTION-DIFFUSION EQUATION WITH TWO NONLOCAL DELAYS

被引:0
作者
Zhao, Haiqin [1 ]
Wu, Shi-liang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
关键词
Regular traveling fronts; reaction-diffusion equation; nonlocal delay; uniqueness; stability; NICHOLSONS BLOWFLIES EQUATION; ASYMPTOTIC STABILITY; UNIQUENESS; FRONTS; EXISTENCE; DYNAMICS; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns regular traveling waves of a reaction-diffusion equation with two nonlocal delays arising from the study of a single species with immature and mature stages and different ages at reproduction. Establishing a necessary condition on the regular traveling waves, we prove the uniqueness of noncritical regular traveling waves, regardless of being monotone or not. Under a quasi-monotone assumption and among other things, we further show that all noncritical monotone traveling waves are exponentially stable, by establishing two comparison theorems and constructing an auxiliary lower equation.
引用
收藏
页数:16
相关论文
共 22 条
[1]  
Aguerrea M, 2012, MATH ANN, V354, P73, DOI 10.1007/s00208-011-0722-8
[2]   Uniqueness of travelling waves for nonlocal monostable equations [J].
Carr, J ;
Chmaj, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2433-2439
[3]   Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics [J].
Chen, XF ;
Guo, JS .
MATHEMATISCHE ANNALEN, 2003, 326 (01) :123-146
[4]   Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations [J].
Chen, XF ;
Guo, JS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :549-569
[5]  
Diekmann O., 1978, Nonlinear Anal, V2, P721, DOI [DOI 10.1016/0362-546X(78)90015-9, 10.1016/0362-546X(78)90015-9]
[6]   UNIQUENESS OF TRAVELING WAVES FOR NONLOCAL LATTICE EQUATIONS [J].
Fang, Jian ;
Wei, Junjie ;
Zhao, Xiao-Qiang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1361-1373
[7]   PROPAGATION DYNAMICS FOR TIME-PERIODIC AND PARTIALLY DEGENERATE REACTION-DIFFUSION SYSTEMS [J].
Huang, Mingdi ;
Wu, Shi-Liang ;
Zhao, Xiao-Qiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) :1860-1897
[8]   EXPONENTIAL STABILITY OF NONMONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION [J].
Lin, Chi-Kun ;
Lin, Chi-Tien ;
Lin, Yanping ;
Mei, Ming .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1053-1084
[9]   On travelling wavefronts of Nicholson's blowflies equation with diffusion [J].
Lin, Chi-Kun ;
Mei, Ming .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :135-152
[10]   Spatio-temporal dynamics of a model for the effect of variable ages at reproduction [J].
Lou, Yijun ;
Zhang, Yuxiang .
NONLINEARITY, 2021, 34 (09) :5897-5925