Bayesian Lasso with neighborhood regression method for Gaussian graphical model

被引:4
|
作者
Li, Fan-qun [1 ,2 ]
Zhang, Xin-sheng [1 ]
机构
[1] Fudan Univ, Sch Management, Dept Stat, Shanghai 200433, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233000, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2017年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
gaussian graphical model; regression; precision matrix; Bayesian Lasso; Frobenius loss; NON-DECOMPOSABLE GRAPHS; SELECTION; LIKELIHOOD;
D O I
10.1007/s10255-017-0676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover, the proposed method can provide symmetric confidence intervals of all entries of the precision matrix.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [41] Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data
    Dobra, Adrian
    Lenkoski, Alex
    Rodriguez, Abel
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1418 - 1433
  • [42] Bayesian geographically weighted regression using Fused Lasso prior
    Sakai, Toshiki
    Tsuchida, Jun
    Yadohisa, Hiroshi
    SPATIAL STATISTICS, 2025, 66
  • [43] Bayesian hypothesis testing for Gaussian graphical models: Conditional independence and order constraints
    Williams, Donald R.
    Mulder, Joris
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 99
  • [44] BAYESIAN GROUP LASSO TOBIT REGRESSION WITH AN UPPER CONSTRAINT AT ZERO
    Al-rubaye, Ali Abdulmohsin Abdulraeem
    Alhseeni, Ameer Musa Imran
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1373 - 1380
  • [45] Quadratic Sparse Gaussian Graphical Model Estimation Method for Massive Variables
    Zhang, Jiaqi
    Wang, Meng
    Li, Qinchi
    Wang, Sen
    Chang, Xiaojun
    Wang, Beilun
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2964 - 2972
  • [46] Frequentist model averaging for undirected Gaussian graphical models
    Liu, Huihang
    Zhang, Xinyu
    BIOMETRICS, 2023, 79 (03) : 2050 - 2062
  • [47] Jewel: A Novel Method for Joint Estimation of Gaussian Graphical Models
    Angelini, Claudia
    De Canditiis, Daniela
    Plaksienko, Anna
    MATHEMATICS, 2021, 9 (17)
  • [48] Polynomial Graphical Lasso: Learning Edges From Gaussian Graph-Stationary Signals
    Buciulea, Andrei
    Ying, Jiaxi
    Marques, Antonio G.
    Palomar, Daniel P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 1153 - 1167
  • [49] Multiple imputation for longitudinal data using Bayesian lasso imputation model
    Yamaguchi, Yusuke
    Yoshida, Satoshi
    Misumi, Toshihiro
    Maruo, Kazushi
    STATISTICS IN MEDICINE, 2022, 41 (06) : 1042 - 1058
  • [50] GAUSSIAN GRAPHICAL MODEL ESTIMATION WITH FALSE DISCOVERY RATE CONTROL
    Liu, Weidong
    ANNALS OF STATISTICS, 2013, 41 (06) : 2948 - 2978