Bayesian Lasso with neighborhood regression method for Gaussian graphical model

被引:4
|
作者
Li, Fan-qun [1 ,2 ]
Zhang, Xin-sheng [1 ]
机构
[1] Fudan Univ, Sch Management, Dept Stat, Shanghai 200433, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233000, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2017年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
gaussian graphical model; regression; precision matrix; Bayesian Lasso; Frobenius loss; NON-DECOMPOSABLE GRAPHS; SELECTION; LIKELIHOOD;
D O I
10.1007/s10255-017-0676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover, the proposed method can provide symmetric confidence intervals of all entries of the precision matrix.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [31] Partial Gaussian Graphical Model Estimation
    Yuan, Xiao-Tong
    Zhang, Tong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1673 - 1687
  • [32] A Bayesian Lasso based sparse learning model
    Helgoy, Ingvild M.
    Li, Yushu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [33] Comparing Gaussian Graphical Models With the Posterior Predictive Distribution and Bayesian Model Selection
    Williams, Donald R.
    Rast, Philippe
    Pericchi, Luis R.
    Mulder, Joris
    PSYCHOLOGICAL METHODS, 2020, 25 (05) : 653 - 672
  • [34] THE BAYESIAN NESTED LASSO FOR MIXED FREQUENCY REGRESSION MODELS
    Ghosh, Satyajit
    Khare, Kshitij
    Michailidis, George
    ANNALS OF APPLIED STATISTICS, 2023, 17 (03) : 2279 - 2304
  • [35] Bayesian Graphical Compositional Regression for Microbiome Data
    Mao, Jialiang
    Chen, Yuhan
    Ma, Li
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 610 - 624
  • [36] Multilevel Gaussian graphical model for multilevel networks
    Cheng, Lulu
    Shan, Liang
    Kim, Inyoung
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 190 : 1 - 14
  • [37] A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL FOR ANALYSIS OF GENETICAL GENOMICS DATA
    Yin, Jianxin
    Li, Hongzhe
    ANNALS OF APPLIED STATISTICS, 2011, 5 (04) : 2630 - 2650
  • [38] Joint Gaussian graphical model estimation: A survey
    Tsai, Katherine
    Koyejo, Oluwasanmi
    Kolar, Mladen
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (06)
  • [39] A Bayesian Approach for Partial Gaussian Graphical Models With Sparsity
    Obiang, Eunice Okome
    Jezequel, Pascal
    Proia, Frederic
    BAYESIAN ANALYSIS, 2023, 18 (02): : 465 - 490
  • [40] Fast Bayesian inference in large Gaussian graphical models
    Leday, Gwenael G. R.
    Richardson, Sylvia
    BIOMETRICS, 2019, 75 (04) : 1288 - 1298