Bayesian Lasso with neighborhood regression method for Gaussian graphical model

被引:4
|
作者
Li, Fan-qun [1 ,2 ]
Zhang, Xin-sheng [1 ]
机构
[1] Fudan Univ, Sch Management, Dept Stat, Shanghai 200433, Peoples R China
[2] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233000, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2017年 / 33卷 / 02期
基金
中国国家自然科学基金;
关键词
gaussian graphical model; regression; precision matrix; Bayesian Lasso; Frobenius loss; NON-DECOMPOSABLE GRAPHS; SELECTION; LIKELIHOOD;
D O I
10.1007/s10255-017-0676-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover, the proposed method can provide symmetric confidence intervals of all entries of the precision matrix.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [1] Bayesian Lasso with neighborhood regression method for Gaussian graphical model
    Fan-qun Li
    Xin-sheng Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 485 - 496
  • [2] Bayesian Lasso with Neighborhood Regression Method for Gaussian Graphical Model
    Fan-qun LI
    Xin-sheng ZHANG
    ActaMathematicaeApplicataeSinica, 2017, 33 (02) : 485 - 496
  • [3] LEARNING GAUSSIAN GRAPHICAL MODELS USING DISCRIMINATED HUB GRAPHICAL LASSO
    Li, Zhen
    Bai, Jingtian
    Zhou, Weilian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2471 - 2475
  • [4] Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso
    Yang, Eunho
    Lozano, Aurelie C.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [5] Bayesian Graphical Lasso Models and Efficient Posterior Computation
    Wang, Hao
    BAYESIAN ANALYSIS, 2012, 7 (04): : 867 - 886
  • [6] Bayesian model-averaged regularization for Gaussian graphical models
    Liu, Zhe
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (04) : 3213 - 3223
  • [7] Bayesian Structure Learning in Sparse Gaussian Graphical Models
    Mohammadi, A.
    Wit, E. C.
    BAYESIAN ANALYSIS, 2015, 10 (01): : 109 - 138
  • [8] Bayesian adaptive Lasso estimation of large graphical model based on modified Cholesky decomposition
    Li, Fanqun
    Zhao, Mingtao
    Zhang, Kongsheng
    STATISTICS & PROBABILITY LETTERS, 2024, 206
  • [9] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36
  • [10] Objective Bayesian model selection in Gaussian graphical models
    Carvalho, C. M.
    Scott, J. G.
    BIOMETRIKA, 2009, 96 (03) : 497 - 512