On the Fractional Variable Order Cucker-Smale Type Model

被引:5
|
作者
Girejko, Ewa [1 ]
Mozyrska, Dorota [1 ]
Wyrwas, Malgorzata [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Bialystok, Poland
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 04期
关键词
nonlinear systems; stability analysis; behavioural science; networks; CONSENSUS; STABILITY; SYSTEMS;
D O I
10.1016/j.ifacol.2018.06.184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper the Cucker Smale type models with a fractional variable order operator are considered. The asymptotic stability of a class of linear fractional variable order discrete time systems is used to study a consensus in the nonlinear fractional variable order discrete time systems. Basing on a linearization method of the considered multi agent system we give the sufficient conditions that guarantee the consensus. Finally, an example illustrates our results. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:693 / 697
页数:5
相关论文
共 50 条
  • [1] The fractional variable-order Cucker-Smale type model for a couple of agents
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 105 - 109
  • [2] Fractional Cucker-Smale Type Models with the Caputo Variable-Order Operator
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    ADVANCES IN NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2020, 559 : 163 - 173
  • [3] Behaviour of the fractional Cucker-Smale type model for a couple of agents
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 746 - 751
  • [4] EMERGENCE OF ANOMALOUS FLOCKING IN THE FRACTIONAL CUCKER-SMALE MODEL
    Ha, Seung-yeal
    Jung, Jinwook
    Kuchling, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (09) : 5465 - 5489
  • [5] From discrete Cucker-Smale model to continuous Cucker-Smale model in a temperature field
    Dong, Jiu-Gang
    Ha, Seung-Yeal
    Kim, Doheon
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)
  • [6] On the multi-cluster flocking of the fractional Cucker-Smale model
    Ahn, Hyunjin
    MATHEMATICS IN ENGINEERING, 2024, 6 (04): : 607 - 647
  • [7] On the existence of optimal consensus control for the fractional Cucker-Smale model
    Almeida, R.
    Kamocki, R.
    Malinowska, A. B.
    Odzijewicz, T.
    ARCHIVES OF CONTROL SCIENCES, 2020, 30 (04) : 625 - 651
  • [8] Robustness of Cucker-Smale flocking model
    Canale, Eduardo
    Dalmao, Federico
    Mordecki, Ernesto
    Souza, Max O.
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (03): : 346 - 350
  • [9] Flocking of the hybrid Cucker-Smale model
    Yan, Jinhua
    Yin, Xiuxia
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (06): : 4016 - 4030
  • [10] Cucker-Smale Model with the Hahn Operator
    Girejko, Ewa
    Malinowska, Agnieszka B.
    Schmeidel, Ewa
    Zdanowicz, Malgorzata
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863