Non-parametric Copula Estimation Under Bivariate Censoring

被引:24
作者
Gribkova, Svetlana [1 ]
Lopez, Olivier [2 ]
机构
[1] Univ Paris 06, Sorbonne Univ, U900 Inserm,LSTA, Inst Curie,Mines ParisTech,Ctr Computat Biol,EA 3, F-75252 Paris 05, France
[2] Univ Paris 06, Sorbonne Univ, ENSAE Paris Tech CREST, Lab Finance & Assurance,EA 3124,LSTA, F-75252 Paris 05, France
关键词
bivariate censoring; bootstrap; copula density; copula function; goodness-of-fit; Kaplan-Meier estimator; non-parametric estimation; survival analysis; OF-FIT TESTS; KAPLAN-MEIER ESTIMATOR; RANDOM CENSORSHIP; SURVIVAL FUNCTION; WEAK-CONVERGENCE; MODEL; MORTALITY; COVARIABLES; DEPENDENCE; INFERENCE;
D O I
10.1111/sjos.12144
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider non-parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l(infinity) ([0, 1](2)).We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non-parametric estimators to define a goodness-of-fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.
引用
收藏
页码:925 / 946
页数:22
相关论文
共 45 条
[1]   Estimation of bivariate and marginal distributions with censored data [J].
Akritas, MG ;
Van Keilegom, I .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :457-471
[2]   BOOTSTRAPPING THE KAPLAN-MEIER ESTIMATOR [J].
AKRITAS, MG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) :1032-1038
[3]  
[Anonymous], 1997, MULTIVARIATE MODELS
[4]  
[Anonymous], 2004, Copula Methods in Finance
[5]  
[Anonymous], 2006, J Actuar Pract
[6]  
Bouye E., 2000, Copulas for Finance-A Reading Guide and Some Applications, DOI [DOI 10.2139/SSRN.1032533, 10.2139/ssrn.1032533]
[7]  
Carriere J.F., 2000, Scand. Actuar. J., V2000, P17, DOI DOI 10.1080/034612300750066700
[8]   Nonparametric estimation of copula functions for dependence modelling [J].
Chen, Song Xi ;
Huang, Tzee-Ming .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (02) :265-282
[9]   KAPLAN-MEIER ESTIMATE ON THE PLANE [J].
DABROWSKA, DM .
ANNALS OF STATISTICS, 1988, 16 (04) :1475-1489
[10]  
Deheuvels P., 1979, Bulletins de l'Academie Royale de Belgique, V65, P274, DOI [10.3406/barb.1979.58521, DOI 10.3406/BARB.1979.58521]