On higher-dimensional superintegrable systems: a new family of classical and quantum Hamiltonian models

被引:4
作者
Rodriguez, Miguel A. [1 ]
Tempesta, Piergiulio [1 ,2 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor, Plaza Ciencias 1, E-28040 Madrid, Spain
[2] Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
Hamiltonian systems; superintegrable models; Liouville integrability; EXACT SOLVABILITY; SYMMETRIES;
D O I
10.1088/1751-8121/acaada
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a family of n-dimensional Hamiltonian systems which, contain, as special reductions, several superintegrable systems as the Tremblay-Turbiner-Winternitz system, a generalized Kepler potential and the anisotropic harmonic oscillator with Rosochatius terms. We conjecture that there exist special values in the space of parameters, apart from those leading to known cases, for which this new Hamiltonian family is superintegrable.
引用
收藏
页数:9
相关论文
共 29 条
  • [1] A maximally superintegrable system on an n-dimensional space of nonconstant curvature
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) : 505 - 509
  • [2] Superintegrability on N-dimensional curved spaces: Central potentials, centrifugal terms and monopoles
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    [J]. ANNALS OF PHYSICS, 2009, 324 (06) : 1219 - 1233
  • [3] General Nth-order superintegrable systems separating in polar coordinates
    Escobar-Ruiz, A. M.
    Winternitz, P.
    Yurdusen, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (40)
  • [4] Superintegrability of the caged anisotropic oscillator
    Evans, N. W.
    Verrier, P. E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (09)
  • [5] ON HIGHER SYMMETRIES IN QUANTUM MECHANICS
    FRIS, J
    MANDROSOV, V
    SMORODINSKY, YA
    UHLIR, M
    WINTERNITZ, P
    [J]. PHYSICS LETTERS, 1965, 16 (03): : 354 - +
  • [6] Superintegrability and Higher-Order Constants for Classical and Quantum Systems
    Kalnins, E. G.
    Miller, W., Jr.
    Pogosyan, G. S.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2011, 74 (06) : 914 - 918
  • [7] Families of classical subgroup separable superintegrable systems
    Kalnins, E. G.
    Kress, J. M.
    Miller, W., Jr.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (09)
  • [8] Kalnins EG, 2018, IOP EXPAND PHYS, P1, DOI 10.1088/978-0-7503-1314-8
  • [9] A SYSTEMATIC SEARCH FOR NONRELATIVISTIC SYSTEMS WITH DYNAMICAL SYMMETRIES .I. INTEGRALS OF MOTION
    MAKAROV, AA
    SMORODIN.JA
    VALIEV, K
    Winternitz, P
    [J]. NUOVO CIMENTO A, 1967, 52 (04): : 1061 - +
  • [10] Classical and quantum superintegrability with applications
    Miller, Willard, Jr.
    Post, Sarah
    Winternitz, Pavel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (42)