Center and pseudo-isochronous conditions in a quasi analytic system

被引:0
作者
Zheng Qingyu [1 ]
Li Hongwei [1 ]
机构
[1] Linyi Univ, Sch Sci, Linyi 276000, Shandong, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 01期
关键词
Infinity; quasi analytic; center; pseudo-isochronicity; POLYNOMIAL DIFFERENTIAL-SYSTEMS; LIMIT-CYCLES; INFINITY; CLASSIFICATION; BIFURCATIONS; CYCLICITY; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The center conditions and pseudo-isochronous center conditions at origin or infinity in a class of non-analytic polynomial differential system are classified in this paper. By proper transforms, the quasi analytic system can be changed into an analytic system, and then the first 77 singular values and periodic constants are computed by Mathematics. Finally, we investigate the center conditions and pseudo-isochronous center conditions at infinity for the system. Especially, this system was investigated when lambda = 1 in [Y. Wu, W. Huang, H. Dai, Qual. Theory Dyn. Syst., 10 (2011), 123-138]. (C) 2016 All rights reserved.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 29 条
  • [1] A novel solution for fractional chaotic Chen system
    Alomari, A. K.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 478 - 488
  • [2] BIFURCATION AT INFINITY IN POLYNOMIAL VECTOR-FIELDS
    BLOWS, TR
    ROUSSEAU, C
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) : 215 - 242
  • [3] Bifurcations of limit cycles from infinity in quadratic systems
    Gavrilov, L
    Iliev, ID
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05): : 1038 - 1064
  • [4] Guinez V., 1993, PITMAN RES NOTES MAT, V285, P40
  • [5] Quasi-analytical model for scattering infrared near-field microscopy on layered systems
    Hauer, Benedikt
    Engelhardt, Andreas P.
    Taubner, Thomas
    [J]. OPTICS EXPRESS, 2012, 20 (12): : 13173 - 13188
  • [6] Bifurcations of limit cycles from infinity for a class of quintic polynomial system
    Huang, W
    Liu, Y
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (04): : 291 - 302
  • [7] DYNAMICS OF A SYSTEM EXHIBITING THE GLOBAL BIFURCATION OF A LIMIT-CYCLE AT INFINITY
    KEITH, WL
    RAND, RH
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1985, 20 (04) : 325 - 338
  • [8] Li HW, 2015, J NONLINEAR SCI APPL, V8, P255
  • [9] Liu Y., 2001, Sci. China, V31, P37
  • [10] Liu Y., 2009, SINGULAR POINT VALUE, P162