Reduced basis methods with adaptive snapshot computations

被引:22
作者
Ali, Mazen [1 ]
Steih, Kristina [1 ]
Urban, Karsten [1 ]
机构
[1] Ulm Univ, Inst Numer Math, Helmholtzstr 20, D-89069 Ulm, Germany
关键词
Reduced basis method; Adaptivity; Wavelets; PARTIAL-DIFFERENTIAL-EQUATIONS; CONVECTION-DIFFUSION EQUATIONS; BASIS MULTISCALE METHOD; GREEDY ALGORITHMS; WAVELET METHODS; EMPIRICAL INTERPOLATION; CONVERGENCE-RATES; APPROXIMATIONS; STABILITY; MATRICES;
D O I
10.1007/s10444-016-9485-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use asymptotically optimal adaptive numerical methods (here specifically a wavelet scheme) for snapshot computations within the offline phase of the Reduced Basis Method (RBM). The resulting discretizations for each snapshot (i.e., parameter-dependent) do not permit the standard RB 'truth space', but allow for error estimation of the RB approximation with respect to the exact solution of the considered parameterized partial differential equation. The residual-based a posteriori error estimators are computed by an adaptive dual wavelet expansion, which allows us to compute a surrogate of the dual norm of the residual. The resulting adaptive RBM is analyzed. We show the convergence of the resulting adaptive greedy method. Numerical experiments for stationary and instationary problems underline the potential of this approach.
引用
收藏
页码:257 / 294
页数:38
相关论文
共 45 条
[1]   Adaptive reduced basis finite element heterogeneous multiscale method [J].
Abdulle, Assyr ;
Bai, Yun .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 257 :203-220
[2]  
Ali M., 2016, LECT NOTES IN PRESS, V112
[3]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[4]   Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations [J].
Ballarin, Francesco ;
Manzoni, Andrea ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (05) :1136-1161
[5]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[6]   CONVERGENCE RATES FOR GREEDY ALGORITHMS IN REDUCED BASIS METHODS [J].
Binev, Peter ;
Cohen, Albert ;
Dahmen, Wolfgang ;
Devore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) :1457-1472
[7]   MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE [J].
Bui-Thanh, T. ;
Willcox, K. ;
Ghattas, O. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06) :3270-3288
[8]   Adaptive h-refinement for reduced-order models [J].
Carlberg, Kevin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (05) :1192-1210
[9]   Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations [J].
Carlberg, Kevin ;
Bou-Mosleh, Charbel ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (02) :155-181
[10]   ADAPTIVE WAVELET SCHEMES FOR PARABOLIC PROBLEMS: SPARSE MATRICES AND NUMERICAL RESULTS [J].
Chegini, Nabi ;
Stevenson, Rob .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) :182-212