Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations

被引:44
|
作者
Saaskilahti, K. [1 ,2 ]
Oksanen, J. [1 ]
Tulkki, J. [1 ]
McGaughey, A. J. H. [2 ]
Volz, S. [3 ,4 ]
机构
[1] Aalto Univ, Sch Sci, Engn Nanosyst Grp, POB 12200, Aalto 00076, Finland
[2] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Ecole Cent Paris, F-92295 Chatenay Malabry, France
[4] CNRS, UPR 288, Lab Energet Mol & Macroscop, Combust EM2C, F-92295 Chatenay Malabry, France
基金
芬兰科学院;
关键词
HEAT;
D O I
10.1063/1.4968617
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The frequency-dependent mean free paths (MFPs) of vibrational heat carriers in amorphous silicon are predicted from the length dependence of the spectrally decomposed heat current (SDHC) obtained from non-equilibrium molecular dynamics simulations. The results suggest a (frequency)(-2) scaling of the room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz, indicating localized vibrations. The MFPs extracted from sub-10 nm system-size simulations are used to predict the length-dependence of thermal conductivity up to system sizes of 100 nm and good agreement is found with independent molecular dynamics simulations. Weighting the SDHC by the frequency-dependent quantum occupation function provides a simple and convenient method to account for quantum statistics and provides reasonable agreement with the experimentally-measured trend and magnitude. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Thermal conductivity of amorphous silica using non-equilibrium molecular dynamics simulations
    Mahajan, S.
    Subbarayan, G.
    Sammakia, B. G.
    2006 PROCEEDINGS 10TH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONICS SYSTEMS, VOLS 1 AND 2, 2006, : 1269 - +
  • [2] Thermal Conductivity in Zeolites Studied by Non-equilibrium Molecular Dynamics Simulations
    Schnell, Sondre K.
    Vlugt, Thijs J. H.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (07) : 1197 - 1213
  • [3] Thermal Conductivity in Zeolites Studied by Non-equilibrium Molecular Dynamics Simulations
    Sondre K. Schnell
    Thijs J. H. Vlugt
    International Journal of Thermophysics, 2013, 34 : 1197 - 1213
  • [4] Thermal conductivity of silicon using reverse non-equilibrium molecular dynamics
    El-Genk, Mohamed S.
    Talaat, Khaled
    Cowen, Benjamin J.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (20)
  • [5] The thermal conductivity of amorphous polymers calculated by non-equilibrium molecular dynamics simulation
    Terao, T.
    Lussetti, E.
    Mueller-Plathe, F.
    COMPLEX SYSTEMS-BOOK 1, 2008, 982 : 486 - +
  • [6] Extrapolation of thermal conductivity in non-equilibrium molecular dynamics simulations to bulk scale
    Talaat, Khaled
    El-Genk, Mohamed S.
    Cowen, Benjamin
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 118
  • [7] Hot spots in silicon by non-equilibrium molecular dynamics simulations
    Tampere University of Technology, Institute of Electronics, P. O. Box 692, FIN-33101 Tampere, Finland
    J. Comput. Theor. Nanosci., 2007, 1 (168-173):
  • [8] Hot spots in silicon by non-equilibrium molecular dynamics simulations
    Heino, P.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2007, 4 (01) : 168 - 173
  • [9] Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations
    Kim, Jong-Chol
    Wi, Ju-Hyok
    Ri, Nam-Chol
    Ri, Su-Il
    SOLID STATE COMMUNICATIONS, 2021, 328
  • [10] Study of Thermal Conductivity of Germanene Based on the Equilibrium and Non-Equilibrium Molecular Dynamics
    Dong, Haikuan
    Xiu, Xiaoming
    Shi, Libin
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (12): : 3990 - 3996