Fourier Density Approximation for Belief Propagation in Wireless Sensor Networks

被引:0
作者
Na, Chongning [1 ]
Wang, Hui [1 ]
Obradovic, Dragan [1 ]
Hanebeck, Uwe D. [2 ]
机构
[1] Siemens AG, Corp Technol, Otto Hahn Ring 6, D-8000 Munich, Germany
[2] Univ Karlsruhe, Inst Comp Sci & Engn, Intelligent Sensor Acutuator Syst Lab, Karlsruhe, Germany
来源
2008 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, VOLS 1 AND 2 | 2008年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many distributed inference problems in wireless sensor networks can be represented by probabilistic graphical models, where belief propagation, an iterative message passing algorithm provides a promising solution. In order to make the algorithm efficient and accurate, messages which carry the belief information from one node to the others should be formulated in an appropriate format. This paper presents two belief propagation algorithms where non-linear and non-Gaussian beliefs are approximated by Fourier density approximations, which significantly reduces power consumptions in the belief computation and transmission. We use self-localization in wireless sensor networks as an example to illustrate the performance of this method.
引用
收藏
页码:445 / +
页数:2
相关论文
共 13 条
[1]   The generalized distributive law [J].
Aji, SM ;
McEliece, RJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :325-343
[2]  
Brunn D., 2006, P 2006 IEEE INT C MU
[3]   Nonfineeir multidimensional bayesion estimation with fourier densities [J].
Brunn, Dietrich ;
Sawo, Felix ;
Hanebeck, Uwe D. .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :1303-1308
[4]  
GHARAVI H, 2003, P IEEE AUG, V91
[5]   Progressive Bayesian estimation for nonlinear discrete-time systems: The measurement step [J].
Hanebeck, UD .
PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, 2003, :173-178
[6]  
IHLER A, 2004, P PSN
[7]   ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS [J].
KRONMAL, R ;
TARTER, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (323) :925-&
[8]   Factor graphs and the sum-product algorithm [J].
Kschischang, FR ;
Frey, BJ ;
Loeliger, HA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :498-519
[9]  
KUMAR S, 2002, IEEE SIGNAL PROC MAR, V19
[10]  
Lauritzen S. L., 1996, GRAPH MODELS