Modified quantum dimensions and re-normalized link invariants

被引:58
作者
Geer, Nathan [1 ]
Patureau-Mirand, Bertrand [2 ]
Turaev, Vladimir [3 ,4 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Europeenne Bretagne, Univ Bretagne Sud, LMAM, F-56017 Vannes, France
[3] Univ Strasbourg, CNRS, IRMA, F-67084 Strasbourg, France
[4] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
knot; Lie algebra; quantum group; tensor category;
D O I
10.1112/S0010437X08003795
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a re-normalization of the Reshetikhin-Turaev quantum invariants of links, using modified quantum dimensions. In the case of simple Lie algebras these modified quantum dimensions are proportional to the usual quantum dimensions. More interestingly, we give two examples where the usual quantum dimensions vanish but the modified quantum dimensions are non-zero and lead to non-trivial link invariants. The first of these examples is a class of invariants axising from Lie superalgebras previously defined by the first two authors. These link invariants are multivaxiable and generalize the multivariable Alexander polynomial. The second example is a hierarchy of link invariants arising from nilpotent representations of quantized sl(2) at a root of unity. These invariants contain Kashaev's quantum dilogarithm invariants of knots.
引用
收藏
页码:196 / 212
页数:17
相关论文
共 9 条