Measuring pressure in equilibrium and nonequilibrium lattice-gas models

被引:4
|
作者
Sellitto, Mauro [1 ,2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dipartimento Ingn, Via Roma 29, I-81031 Aversa, Italy
[2] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 16期
关键词
SQUARE LATTICE; HARD; DYNAMICS; STATE;
D O I
10.1063/5.0028823
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop an algorithm based on the method proposed by Dickman for directly measuring pressure in lattice-gas models. The algorithm gives the possibility to access the equation of state with a single run by adding multiple ghost sites to the original system. This feature considerably improves calculations and makes the algorithm particularly efficient for systems with inhomogeneous density profiles, both in equilibrium and nonequilibrium steady states. We illustrate its broad applicability by considering some paradigmatic systems of statistical mechanics such as the lattice gas under gravity, nearest-neighbor exclusion models in finite dimension and on regular random graphs, and the boundary-driven simple symmetric exclusion process.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] On the Mean Residence Time in Stochastic Lattice-Gas Models
    Zamparo, Marco
    Dall'Asta, Luca
    Gamba, Andrea
    JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (01) : 120 - 134
  • [32] Comparison of models and lattice-gas simulations for Liesegang patterns
    L. Jahnke
    J. W. Kantelhardt
    The European Physical Journal Special Topics, 2008, 161 : 121 - 141
  • [33] Sturmian Ground States in Classical Lattice-Gas Models
    van Enter, Aernout
    Koivusalo, Henna
    Miekisz, Jacek
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (03) : 832 - 844
  • [34] On the Mean Residence Time in Stochastic Lattice-Gas Models
    Marco Zamparo
    Luca Dall’Asta
    Andrea Gamba
    Journal of Statistical Physics, 2019, 174 : 120 - 134
  • [35] TOPOLOGICAL DYNAMICS OF FLIPPING LORENTZ LATTICE-GAS MODELS
    BUNIMOVICH, LA
    TROUBETZKOY, SE
    JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (1-2) : 297 - 307
  • [36] APPROXIMATION OF CLUSTER INTEGRALS FOR VARIOUS LATTICE-GAS MODELS
    Ushcats, S. Yu
    Ushcats, M., V
    Sysoev, V. M.
    Gavryushenko, D. A.
    UKRAINIAN JOURNAL OF PHYSICS, 2018, 63 (12): : 1066 - 1075
  • [37] LATTICE-GAS CRYSTALLIZATION
    YEPEZ, J
    JOURNAL OF STATISTICAL PHYSICS, 1995, 81 (1-2) : 255 - 294
  • [38] Dynamical pressure anisotropy in liquid-gas model of lattice-gas
    Ebihara, KI
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (01): : 53 - 64
  • [39] Lattice Boltzmann models for nonequilibrium gas flows
    Tang, Gui-Hua
    Zhang, Yong-Hao
    Emerson, David R.
    PHYSICAL REVIEW E, 2008, 77 (04):
  • [40] Lattice-gas models of electrochemical adsorption: Static and dynamic aspects
    Rikvold, PA
    Wieckowski, A
    Ramos, RA
    ELECTROCHEMICAL SYNTHESIS AND MODIFICATION OF MATERIALS, 1997, 451 : 69 - 74