A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity

被引:34
作者
Goodman-Meza, David [1 ]
Rudas, Akos [2 ,3 ]
Chiang, Jeffrey N. [2 ]
Adamson, Paul C. [1 ]
Ebinger, Joseph [4 ]
Sun, Nancy [4 ]
Botting, Patrick [4 ]
Fulcher, Jennifer A. [1 ]
Saab, Faysal G. [5 ]
Brook, Rachel [5 ]
Eskin, Eleazar [2 ,6 ,7 ]
An, Ulzee [6 ]
Kordi, Misagh [2 ]
Jew, Brandon [2 ]
Balliu, Brunilda [2 ]
Chen, Zeyuan [6 ]
Hill, Brian L. [6 ]
Rahmani, Elior [6 ]
Halperin, Eran [2 ,6 ,7 ,8 ]
Manuel, Vladimir [9 ,10 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Div Infect Dis, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA USA
[3] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
[4] Cedars Sinai Med Ctr, Dept Cardiol, Los Angeles, CA 90048 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[7] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Los Angeles, CA 90095 USA
[9] Univ Calif Los Angeles, David Geffen Sch Med, Fac Practice Grp, Los Angeles, CA 90095 USA
[10] Univ Calif Los Angeles, Clin & Translat Sci Inst, Los Angeles, CA USA
来源
PLOS ONE | 2020年 / 15卷 / 09期
基金
美国国家科学基金会;
关键词
D O I
10.1371/journal.pone.0239474
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.
引用
收藏
页数:10
相关论文
共 16 条
[1]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1136/bmj.h5527, 10.1373/clinchem.2015.246280, 10.1148/radiol.2015151516]
[2]  
CDC COVID-19 Response Team, 2020, MMWR-MORBID MORTAL W, V69, P343, DOI [10.15585/mmwr.mm6912e2, 10.15585/mmwr.mm6915e4]
[3]   Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2 A Narrative Review [J].
Cheng, Matthew P. ;
Papenburg, Jesse ;
Desjardins, Michael ;
Kanjilal, Sanjat ;
Quach, Caroline ;
Libman, Michael ;
Dittrich, Sabine ;
Yansouni, Cedric P. .
ANNALS OF INTERNAL MEDICINE, 2020, 172 (11) :726-+
[4]  
de Moraes Batista A. F., 2020, EPIDEMIOLOGY, DOI [10.1101/2020.04.04.20052092, DOI 10.1101/2020.04.04.20052092]
[5]   An interactive web-based dashboard to track COVID-19 in real time [J].
Dong, Ensheng ;
Du, Hongru ;
Gardner, Lauren .
LANCET INFECTIOUS DISEASES, 2020, 20 (05) :533-534
[6]  
Eastin T., 2020, NEW ENG J MED, V58, P711
[7]  
Feng C, 2020, NOVEL TRIAGE TOOL AR, DOI [10.2139/ ssrn.3551355, DOI 10.1101/2020.03.19.20039099, 10.2139/ssrn.3551355]
[8]  
Meng Z., 2020, medRxiv
[9]   Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study [J].
Petrilli, Christopher M. ;
Jones, Simon A. ;
Yang, Jie ;
Rajagopalan, Harish ;
O'Donnell, Luke ;
Chernyak, Yelena ;
Tobin, Katie A. ;
Cerfolio, Robert J. ;
Francois, Fritz ;
Horwitz, Leora I. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[10]  
Service R., 2020, SCIENCE, DOI [10.1126/science.abb8400, DOI 10.1126/SCIENCE.ABB8400]