A combined drug discovery strategy based on machine learning and molecular docking

被引:24
作者
Zhang, Yanmin [1 ]
Wang, Yuchen [1 ]
Zhou, Weineng [1 ]
Fan, Yuanrong [1 ]
Zhao, Junnan [1 ]
Zhu, Lu [1 ]
Lu, Shuai [1 ]
Lu, Tao [1 ,2 ]
Chen, Yadong [1 ]
Liu, Haichun [1 ]
机构
[1] China Pharmaceut Univ, Sch Sci, Lab Mol Design & Drug Discovery, Nanjing, Jiangsu, Peoples R China
[2] China Pharmaceut Univ, State Key Lab Nat Med, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ACC inhibitors; extremely randomized trees; machine learning; molecular docking; RANDOM FOREST; ACETYL-COENZYME; CARBOXYLASE; INHIBITORS; QSAR; CLASSIFICATION; PREDICTION; CHEMISTRY; CANCER;
D O I
10.1111/cbdd.13494
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Data mining methods based on machine learning play an increasingly important role in drug design and discovery. In the current work, eight machine learning methods including decision trees, k-Nearest neighbor, support vector machines, random forests, extremely randomized trees, AdaBoost, gradient boosting trees, and XGBoost were evaluated comprehensively through a case study of ACC inhibitor data sets. Internal and external data sets were employed for cross-validation of the eight machine learning methods. Results showed that the extremely randomized trees model performed best and was adopted as the first step of virtual screening. Together with structure-based virtual screening in the second step, this combined strategy obtained desirable results. This work indicates that the combination of machine learning methods with traditional structure-based virtual screening can effectively strengthen the ability in finding potential hits from large compound database for a given target.
引用
收藏
页码:685 / 699
页数:15
相关论文
共 54 条
[11]   Augmented Backward Elimination: A Pragmatic and Purposeful Way to Develop Statistical Models [J].
Dunkler, Daniela ;
Plischke, Max ;
Leffondre, Karen ;
Heinze, Georg .
PLOS ONE, 2014, 9 (11)
[12]   Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening [J].
Ericksen, Spencer S. ;
Wu, Haozhen ;
Zhang, Huikun ;
Michael, Lauren A. ;
Newton, Michael A. ;
Hoffmann, F. Michael ;
Wildman, Scott A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (07) :1579-1590
[13]   Stochastic gradient boosting [J].
Friedman, JH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) :367-378
[14]   Extremely randomized trees [J].
Geurts, P ;
Ernst, D ;
Wehenkel, L .
MACHINE LEARNING, 2006, 63 (01) :3-42
[15]   Consensus Diversity Plots: a global diversity analysis of chemical libraries [J].
Gonzalez-Medina, Mariana ;
Prieto-Martinez, Fernando D. ;
Owen, John R. ;
Medina-Franco, Jose L. .
JOURNAL OF CHEMINFORMATICS, 2016, 8 :1-11
[16]   Feature Selection Methods in QSAR Studies [J].
Goodarzi, Mohammad ;
Dejaegher, Bieke ;
Vander Heyden, Yvan .
JOURNAL OF AOAC INTERNATIONAL, 2012, 95 (03) :636-651
[17]   Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes [J].
Griffith, David A. ;
Kung, Daniel W. ;
Esler, William P. ;
Amor, Paul A. ;
Bagley, Scott W. ;
Beysen, Carine ;
Carvajal-Gonzalez, Santos ;
Doran, Shawn D. ;
Limberakis, Chris ;
Mathiowetz, Alan M. ;
McPherson, Kirk ;
Price, David A. ;
Ravussin, Eric ;
Sonnenberg, Gabriele E. ;
Southers, James A. ;
Sweet, Laurel J. ;
Turner, Scott M. ;
Vajdos, Felix F. .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (24) :10512-10526
[18]   N-{3-[2-(4-Alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as acetyl-CoA carboxylase inhibitors -: Improvement of cardiovascular and neurological liabilities via structural modifications [J].
Gu, Yu Gui ;
Weitzberg, Moshe ;
Clark, Richard F. ;
Xu, Xiangdong ;
Li, Qun ;
Lubbers, Nathan L. ;
Yang, Yi ;
Beno, David W. A. ;
Widomski, Deborah L. ;
Zhang, Tianyuan ;
Hansen, T. Matthew ;
Keyes, Robert F. ;
Waring, Jeffrey F. ;
Carroll, Sherry L. ;
Wang, Xiaojun ;
Wang, Rongqi ;
Healan-Greenberg, Christine H. ;
Blomme, Eric A. ;
Beutel, Bruce A. ;
Sham, Hing L. ;
Camp, Heidi S. .
JOURNAL OF MEDICINAL CHEMISTRY, 2007, 50 (05) :1078-1082
[19]  
GUCHHAIT RB, 1974, J BIOL CHEM, V249, P6646
[20]   Classification of Cytochrome P450 Activities Using Machine Learning Methods [J].
Hammann, Felix ;
Gutmann, Heike ;
Baumann, Ulli ;
Helma, Christoph ;
Drewe, Juergen .
MOLECULAR PHARMACEUTICS, 2009, 6 (06) :1920-1926