Durability of slag waste incorporated steel fiber-reinforced concrete in marine environment

被引:42
作者
Kim, Seungwon [1 ]
kim, Yongjae [1 ]
Usman, Muhammad [2 ]
Park, Cheolwoo [1 ]
Hanif, Asad [3 ]
机构
[1] Kangwon Natl Univ, Dept Civil Engn, 346 Jungang Ro, Samcheok Si 25913, Gangwon Do, South Korea
[2] Natl Univ Sci & Technol, Sch Civil & Environm Engn, Sect H-12, Islamabad, Pakistan
[3] Univ Macau, Inst Appl Phys & Mat Engn, Ave Univ, Taipa, Macau, Peoples R China
关键词
Steel fiber-reinforced concrete; GGBS; Durability; Service life prediction; Sustainable development; BLAST-FURNACE SLAG; RECYCLED AGGREGATE CONCRETE; CHLORIDE-ION PENETRATION; FLY-ASH; COMPRESSIVE STRENGTH; PROPERTIES ENHANCEMENT; MECHANICAL-PROPERTIES; HARDENED PROPERTIES; CEMENT; RESISTANCE;
D O I
10.1016/j.jobe.2020.101641
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, slag waste was incorporated as cement replacement in steel fiber reinforced concrete (SFRC), and the subsequent effect on durability in marine environment is investigated. Two replacement ratios (30% and 50%) of slag were used, and the corresponding properties pertaining to chloride ion penetration were determined by NT Build 492. Long term behavior under marine environment exposure was also evaluated by immersing the concrete specimens in seawater at the East Sea of South Korea. Also, probabilistic methods were employed to predict service life of the developed concretes based on chloride attack. The results clearly indicated that GGBS incorporation leads to improved durability attributes as indicated by reduced penetration depth and lower migration coefficient of chloride ions for all GGBS incorporated specimens. The long-term durability evaluation also corroborated the beneficial effects of GGBS on concrete durability. Further, the probabilistic service life assessment showed that GGBS addition led to significantly higher (more than seven times) service life, as set by the criterion of chloride ion penetration up to 50 mm. The usefulness of GGBS in improving durability of plain as well as steel fiber reinforced concrete points towards effective waste utilization in construction and building materials with improved durability and service life in marine environment.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Mechanical Properties and Durability of Fiber Reinforced Alkali Activated Slag Concrete
    Behfarnia, Kiachehr
    Rostami, Majid
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2017, 29 (12)
  • [22] Performance Evaluation and Microstructure Characterization of Steel Fiber-Reinforced Alkali-Activated Slag Concrete Incorporating Fly Ash
    El-Hassan, Hilal
    Elkholy, Said
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (10)
  • [23] Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag
    Bayraktar, Oguzhan Yavuz
    Kaplan, Gokhan
    Gencel, Osman
    Benli, Ahmet
    Sutcu, Mucahit
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 288
  • [24] Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment
    Benmokrane, B
    Wang, P
    Ton-That, TM
    Rahman, H
    Robert, JF
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2002, 6 (03) : 143 - 153
  • [25] Grey Correlation Analysis of the Durability of Steel Fiber-Reinforced Concrete under Environmental Action
    Ji, Yongcheng
    Xu, Wenwen
    Sun, Yichen
    Ma, Yulong
    He, Qiulin
    Xing, Zhiqiang
    MATERIALS, 2022, 15 (14)
  • [26] Durability Study of High-Strength Steel Fiber-Reinforced Concrete
    Sharma, Satish
    Arora, V. V.
    Kumar, Suresh
    Daniel, Y. N.
    Sharma, Ankit
    ACI MATERIALS JOURNAL, 2018, 115 (02) : 219 - 225
  • [27] Splitting tensile strength of recycled tire steel fiber-reinforced alkali-activated slag concrete designed by Taguchi method
    Eskandarinia, Milad
    Esmailzade, Mina
    Aslani, Farhad
    STRUCTURAL CONCRETE, 2023, 24 (03) : 3365 - 3384
  • [28] Corrosion resistance of fiber-reinforced geopolymer structural concrete in a simulated marine environment
    Sobhan, Khaled
    Martinez, Francisco J.
    Reddy, Dronnadula, V
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2022, 49 (03) : 310 - 317
  • [29] Slag waste incorporation in high early strength concrete as cement replacement: Environmental impact and influence on hydration & durability attributes
    Kim, Yongjae
    Hanif, Asad
    Usman, Muhammad
    Munir, Muhammad Junaid
    Kazmi, Syed Minhaj Saleem
    Kim, Samsoo
    JOURNAL OF CLEANER PRODUCTION, 2018, 172 : 3056 - 3065
  • [30] Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence
    Zheng, Dong
    Wu, Rongxing
    Sufian, Muhammad
    Ben Kahla, Nabil
    Atig, Miniar
    Deifalla, Ahmed Farouk
    Accouche, Oussama
    Azab, Marc
    MATERIALS, 2022, 15 (15)