Linear forms in two m-adic logarithms and applications to Diophantine problems

被引:19
作者
Bugeaud, Y [1 ]
机构
[1] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
关键词
Baker's method; Diophantine equation; linear form in logarithms; non-Archimedean approximation;
D O I
10.1023/A:1015825809661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sharp, explicit estimates for linear forms in two logarithms, simultaneously for several non-Archimedean valuations. We present applications to explicit lower bounds for the fractional part of powers of rational numbers, and to the Diophantine equation (x(n)-1)/(x-1) = y(q).
引用
收藏
页码:137 / 158
页数:22
相关论文
共 32 条
[1]   FRACTIONAL PARTS OF POWERS OF RATIONALS [J].
BAKER, A ;
COATES, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) :269-279
[2]  
BAKER A, 1993, J REINE ANGEW MATH, V442, P19
[3]  
BAKER A, 1966, MATHEMATIKA, V12, P204
[6]   On the diophantine equation xn-1/x-1=yq [J].
Bugeaud, Y ;
Mignotte, M ;
Roy, Y .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (02) :257-268
[7]   On the diophantienne equation (xn-1)l(x-1)=yq, III [J].
Bugeaud, Y ;
Hanrot, G ;
Mignotte, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :59-78
[8]   Effective lower bounds of the p-adic distance between powers of algebraic numbers [J].
Bugeaud, Y ;
Laurent, M .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :311-342
[9]   Linear forms in p-adic logarithms and the Diophantine equation xn-1/x-1=yq [J].
Bugeaud, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :373-381
[10]  
BUGEAUD Y, 1999, CR ACAD SCI SER, V1, P328