Difference in magnetic anisotropy of the ferromagnetic monolayers VI3 and CrI3

被引:33
作者
Zhao, Guo-Dong [1 ,2 ,3 ]
Liu, Xingen [1 ,2 ,3 ]
Hu, Tao [1 ,2 ,3 ]
Jia, Fanhao [1 ,2 ,3 ]
Cui, Yaning [1 ,2 ,3 ]
Wu, Wei [1 ,2 ,3 ]
Whangbo, Myung-Hwan [4 ,5 ]
Ren, Wei [1 ,2 ,3 ]
机构
[1] Shanghai Univ, Int Ctr Quantum & Mol Struct, Dept Phys, State Key Lab Adv Special Steel, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Key Lab High Temp Superconductors, Shanghai 200444, Peoples R China
[4] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
[5] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; INTRINSIC FERROMAGNETISM; CRYSTAL; VISUALIZATION; DISCOVERY;
D O I
10.1103/PhysRevB.103.014438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Concerning the magnetic anisotropy and magnetic moments of the M3+ (M = V, Cr) ions in ferromagnetic (FM) MI3 monolayers, which have a honeycomb pattern of edge-sharing MI6 octahedra, conflicting observations have been reported in experimental and theoretical studies. We resolve these conflicts by determining the magnetic anisotropy energies for the M3+ ions of MI3 monolayers, by analyzing their preferred spin orientations in terms of the selection rules based on the highest occupied molecular orbital-lowest unoccupied molecular orbital interactions of the MI6 octahedra, and by discussing whether or not the M3+ ions are uniaxial. Here we show that the FM monolayer VI3 is uniaxial, but that of CrI3 is not. The magnetic anisotropy energy for the V3+ (d(2), S = 1) ion of VI3 is greater than that for the Cr3+ (d(3), S = 3/2) ion of CrI3 by more than an order of magnitude (i.e., similar to 8 vs similar to 0.6 meV). The V3+ ion exhibits uniaxial magnetism because its orbital quantum number L is not zero (L = 1), in contrast to the Cr3+ ion (L = 0).
引用
收藏
页数:8
相关论文
共 56 条
  • [11] Hybrid functionals based on a screened Coulomb potential
    Heyd, J
    Scuseria, GE
    Ernzerhof, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18) : 8207 - 8215
  • [12] Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect
    Hu, Tao
    Zhao, Guodong
    Gao, Heng
    Wu, Yabei
    Hong, Jisang
    Stroppa, Alessandro
    Ren, Wei
    [J]. PHYSICAL REVIEW B, 2020, 101 (12)
  • [13] Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
    Huang, Bevin
    Clark, Genevieve
    Navarro-Moratalla, Efren
    Klein, Dahlia R.
    Cheng, Ran
    Seyler, Kyle L.
    Zhong, Ding
    Schmidgall, Emma
    McGuire, Michael A.
    Cobden, David H.
    Yao, Wang
    Xiao, Di
    Jarillo-Herrero, Pablo
    Xu, Xiaodong
    [J]. NATURE, 2017, 546 (7657) : 270 - +
  • [14] Discovery of twin orbital-order phases in ferromagnetic semiconducting VI3 monolayer
    Huang, Chengxi
    Wu, Fang
    Yu, Shunli
    Jena, Puru
    Kan, Erjun
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (02) : 512 - 517
  • [15] Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors
    Huang, Chengxi
    Feng, Junsheng
    Wu, Fang
    Ahmed, Dildar
    Huang, Bing
    Xiang, Hongjun
    Deng, Kaiming
    Kan, Erjun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (36) : 11519 - 11525
  • [16] Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer
    Huang, Chengxi
    Du, Yongping
    Wu, Haiping
    Xiang, Hongjun
    Deng, Kaiming
    Kan, Erjun
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [17] Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures
    Jiang, Shengwei
    Li, Lizhong
    Wang, Zefang
    Shan, Jie
    Mak, Kin Fai
    [J]. NATURE ELECTRONICS, 2019, 2 (04) : 159 - 163
  • [18] Electric-field switching of two-dimensional van der Waals magnets
    Jiang, Shengwei
    Shan, Jie
    Mak, Kin Fai
    [J]. NATURE MATERIALS, 2018, 17 (05) : 406 - +
  • [19] Ferromagnetism in MnX2 ( X = S, Se) monolayers
    Kan, Min
    Adhikari, Subash
    Sun, Qiang
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (10) : 4990 - 4994