Fall Detection Using Ultra-Wideband Positioning

被引:0
作者
Vecchio, Alessio [1 ]
Cola, Guglielmo [1 ]
机构
[1] Univ Pisa, Dip Ingn Informaz, Pisa, Italy
来源
2016 IEEE SENSORS | 2016年
关键词
fall detection; ultra-wideband positioning; wearable sensors;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Falls are a major health problem in our aging society. Fall detection systems are aimed at automatically sending an alarm in case of falls. Unfortunately most of the systems currently available, which use accelerometric sensors, are characterized by a relatively large number of false alarms. In fact, many activities of daily living may produce fall-like acceleration signals. We propose a method that uses ultra-wideband positioning to track the movements of the user and detect falls. Preliminary results show that the approach is reliable in detecting falls and simple postures.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Fall Detection Using Kinect Sensor and Fall Energy Image
    Kwolek, Bogdan
    Kepski, Michal
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 294 - 303
  • [22] Fall Detection Using Multimodal Data
    Ha, Thao, V
    Hoang Nguyen
    Huynh, Son T.
    Nguyen, Trung T.
    Nguyen, Binh T.
    MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 392 - 403
  • [23] Fall Detection Application Using Kinect
    Gunadi, Kartika
    Liliana
    Tjitrokusmo, Jonathan
    2017 INTERNATIONAL CONFERENCE ON SOFT COMPUTING, INTELLIGENT SYSTEM AND INFORMATION TECHNOLOGY (ICSIIT), 2017, : 279 - 282
  • [24] Few-shot Fall Detection using Shallow Siamese Network
    Bakshi, Satyake
    Rajan, Sreeraman
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (IEEE MEMEA 2021), 2021,
  • [25] An Orientation Histogram Based Approach for Fall Detection Using Wearable Sensors
    Nguyen Ngoc Diep
    Cuong Pham
    Tu Minh Phuong
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 354 - 366
  • [26] Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model
    Hsieh, Chia-Yeh
    Liu, Kai-Chun
    Huang, Chih-Ning
    Chu, Woei-Chyn
    Chan, Chia-Tai
    SENSORS, 2017, 17 (02)
  • [27] A hardware framework for fall detection using inertial sensors and compressed sensing
    Kerdjidj, Oussama
    Boutellaa, Elhocine
    Amira, Abbes
    Ghanem, Khalida
    Chouireb, Fatima
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 91
  • [28] A Smart Phone-Based Pocket Fall Accident Detection, Positioning, and Rescue System
    Kau, Lih-Jen
    Chen, Chih-Sheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (01) : 44 - 56
  • [29] Fall detection and reducing detection error using FMCW radar
    Baik, Jaeyoung
    Jung, Chaewon
    Nam, Ari
    Shin, Hyun-Chool
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 553 - 555
  • [30] Fall Detection Using LSTM and Transfer Learning
    Ayesha Butt
    Sanam Narejo
    Muhammad Rizwan Anjum
    Muhammad Usman Yonus
    Mashal Memon
    Arbab Ali Samejo
    Wireless Personal Communications, 2022, 126 : 1733 - 1750